

ТЕХНИЧЕСКИЙ ПАСПОРТ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ И МОНТАЖУ

ВОДЯНЫЕ ТЕПЛОВЕНТИЛЯТОРЫ ГРЕЕРС ВС

Уважаемый клиент!

Благодарим Вас за выбор нашего оборудования. Мы ценим Ваше доверие и рады, что смогли предложить продукт, который соответствует Вашим требованиям и ожиданиям.

Чтобы Вам было легче освоить работу с новым устройством, мы предлагаем Вам ознакомиться с данным руководством по эксплуатации и монтажу. В этом руководстве вы найдёте не только информацию о том, как правильно использовать устройство, но и советы по уходу и техническому обслуживанию. Следуя всем рекомендациям и советам, Вы сможете продлить срок службы устройства и обеспечить безопасность при его использовании.

Будем рады видеть Вас снова среди наших клиентов. Надеемся, что наше оборудование станет надежным помощником в ваших делах.

На все вопросы мы готовы ответить по телефону: 8 800 707-02-35

С уважением, команда компании "ЮНИО-ВЕНТ"

ОГЛАВЛЕНИЕ

ОБЩИЕ УКАЗАНИЯ	4
НАЗНАЧЕНИЕ И КОНСТРУКЦИЯ	5
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ГАБАРИТЫ	6-8
ТАБЛИЦЫ ТЕПЛОВОЙ МОЩНОСТИ	9-11
ТАБЛИЦЫ МОЩНОСТИ ОХЛАЖДЕНИЯ	12–13
РЕКОМЕНДАЦИИ ПО МОНТАЖУ	14-16
ПОДКЛЮЧЕНИЕ К ТЕПЛО И ЭЛЕКТРОСЕТИ	17–18
АВТОМАТИКА И ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ	19-20
СХЕМЫ ПОДКЛЮЧЕНИЯ ДЛЯ АППАРАТОВ С АС ДВИГАТЕЛЕМ	21–26
СХЕМЫ ПОДКЛЮЧЕНИЯ ДЛЯ АППАРАТОВ С ЕС ДВИГАТЕЛЕМ	27
ПУСКО-НАЛАДОЧНЫЕ РАБОТЫ И ЭКСПЛУАТАЦИЯ	28
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	29
ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ	30_31

ПРЕЖДЕ ЧЕМ НАЧАТЬ ИСПОЛЬЗОВАТЬ УСТРОЙСТВО, ВНИМАТЕЛЬНО ОЗНАКОМЬТЕСЬ С ЭТОЙ ИНСТРУКЦИЕЙ И ДЕРЖИТЕ ЕЁ В ЛЕГКОДОСТУПНОМ МЕСТЕ

Примечание

- В данном техническом паспорте тепловентилятор с водяным теплообменником может иметь следующие технические названия:
 устройство, аппарат, водяной тепловентилятор, воздушно-отопительный агрегат.
- В тексте и цифровых обозначениях технического паспорта могут быть допущены опечатки.
- Если после прочтения инструкции у Вас останутся вопросы по эксплуатации аппарата, обратитесь к продавцу или позвоните по бесплатному номеру 8 800 707-02-35.

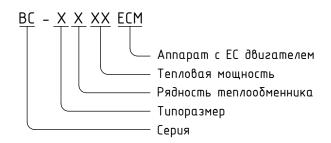
Используемые обозначения

Требования, несоблюдение которых может привести к травме или повреждению оборудования.

Требования, несоблюдение которых может привести к серьезной травме или летальному исходу.

ОБЩИЕ УКАЗАНИЯ

Данное руководство является неотъемлемой и существенной частью водяного тепловентилятора (устройства, аппарата) серии «ВС». Подробное ознакомление клиента (пользователя) с настоящей документацией обязательно для правильной и безопасной работы устройства:


- Устройство должно использоваться строго по указанному назначению. Использование не по назначению является опасным для здоровья и имущества.
- Несоблюдение указанных ниже условий может нарушить безопасность устройства.
- Компания-изготовитель не несет ответственность за ущерб, возникающий в результате ошибок при установке, эксплуатации и при несоблюдении указаний компании-изготовителя.
- При поломке или сбоях в работе устройства следует отключить его и обратиться к квалифицированным специалистам. Таковыми являются лица, которые имеют опыт, знания существующих норм, а также правил безопасности и условий работы в области систем отопления.
- Запрещается самостоятельно ремонтировать или проводить техническое обслуживание устройства.
- Ремонт устройства должен осуществляться сервисным центром, уполномоченным компанией-изготовителем, с использованием фирменных запасных частей.
- Для обеспечения эффективной и правильной работы устройства необходимо ежегодно проводить техническое обслуживание с помощью квалифицированного персонала, следуя указаниям компании—изготовителя.
- С целью улучшения продукции компания-изготовитель оставляет за собой право изменять содержание настоящего руководства без предварительного уведомления.
- Производитель оставляет за собой право без предварительного уведомления вносить изменения в конструкцию, комплектацию, внешний вид (в том числе цвет) или технологию изготовления устройства, не ухудшающие его потребительских свойств, с целью улучшения его характеристик. Это не является недостатком товара.

МАРКИРОВКА И ЗНАКИ

Водяные тепловентиляторы ГРЕЕРС ВС маркируются фирменным шильдиком, который содержит наименование модели, номер и технические параметры устройства. Эти данные помогут Вам при обращении в техническую поддержку по вопросам монтажа и эксплуатации. Изготовитель не консультирует по моделям тепловентиляторов других производителей.

Маркировка водяных тепловентиляторов ГРЕЕРС

Каждое изделие проходит проверку представителем ОТК изготовителя и маркируется круглой наклейкой зеленого цвета с надписью ПРОВЕРЕНО.

НАЗНАЧЕНИЕ И КОНСТРУКЦИЯ

Тепловентилятор ГРЕЕРС ВС является элементом децентрализованной системы отопления. Предназначен для отопления (охлаждения) и поддержания необходимого уровня температуры в помещениях различного назначения: общественных, торговых, складских, спортивных и промышленных объектах.

Принцип работы тепловентилятора основан на протекании горячей воды через теплообменник, который отдает тепло струе нагнетаемого воздуха. Аппараты второго типоразмера также могут работать на охлаждение воздуха при протекании через теплообменник холодной воды.

Тепловентилятор ГРЕЕРС ВС в стандартном исполнении имеет (Рис. 1):

- 1. З-скоростной осевой вентилятор с мотором типа АС (асинхронный) или мотором типа ЕС (электронно-коммутируемый, для 1-го и 2-го типоразмера).
- 2. Медно-алюминиевый теплообменник. Рядность теплообменника определяется количеством рядов медных трубок.
- 3. Направляющее сопло из ABS пластика (для 1-го и 2-го типоразмера) или из металла с порошковым покрытием (для 3-го типоразмера).
- 4. Передняя часть корпуса из вспененного полипропилена (EPP), устойчивого к механическому, термическому и химическому воздействию.
- 5. Направляющие жалюзи из ABS пластика (для 1-го и 2-го типоразмера) или из металла с порошковым покрытием (для 3-го типоразмера).
- 6. Поворотная монтажная консоль из стали с порошковым покрытием.
- 7. Кронштейн крепления консоли (2 шт.)

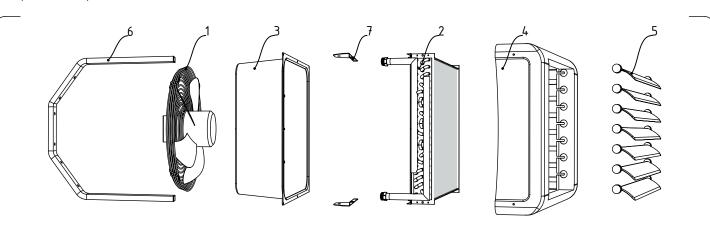


Рис. 1. Составные элементы тепловентилятора ГРЕЕРС ВС

В комплект устройства входит:

- Водяной тепловентилятор;
- Монтажная консоль;
- Кронштейны крепления монтажной консоли к тепловентилятору;
- Технический паспорт. Руководство по эксплуатации и монтажу;
- Гарантийный талон.

Группа аппаратов ГРЕЕРС серии ВС состоит из следующих моделей:

■ Annapamы 1-го типоразмера: ГРЕЕРС ВС-1110, ВС-1220, ВС-1230 (АС двигатель)

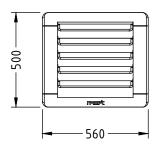
ГРЕЕРС BC-1110ECM, BC-1220ECM, BC-1230ECM (EC двигатель).

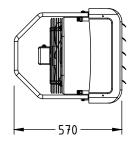
Annapamы 2-го типоразмера: ГРЕЕРС ВС-2125, ВС-2245, ВС-2365 (АС двигатель)

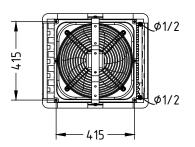
ГРЕЕРС BC-2125ECM, BC-2245ECM, BC-2365ECM (EC двигатель)

■ Аппараты 3-го типоразмера: ГРЕЕРС ВС-3275, 33100 (АС двигатель).

Тепловентиляторы 1-го и 2-го типоразмера могут комплектоваться вентиляторами с ЕС двигателями. ЕС двигатели с электронным управлением плавно реагируют на изменение требований по выходной мощности, работают в особо экономном режиме частичной нагрузки и нечувствительны к колебаниям напряжения. ЕС моторы в некоторых режимах работы могут обеспечить снижение до 30% расхода электрической энергии в сравнении с обычными трехфазными АС двигателями.

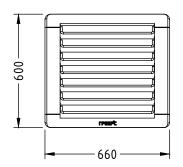

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ГАБАРИТЫ

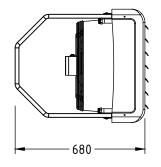

АППАРАТЫ ПЕРВОГО ТИПОРАЗМЕРА

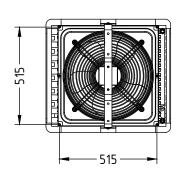

Характеристики	BC-111	0 BC-1	110ECM	BC-122	20 BC-1	220ECM	BC-123	0 BC-1	230ECM
Диапазон тепловых мощностей (кВт)*		6.9 – 13.5	i		12.8 – 24.4	4		16.5 – 31.5	5
Скорость АС (% установки ЕС)	1 (50)	2 (75)	3 (100)	1 (50)	2 (75)	3 (100)	1 (50)	2 (75)	3 (100)
Обороты двигателя АС (об/мин)	700	1100	1450	700	1100	1450	700	1100	1450
Расход воздуха (м³/ч)	1100	1600	2100	700	1200	2000	400	900	1900
Питание (В/Гц)		230/50			230/50			230/50	
Потребляемый ток для двигателя АС (А)	0.25	0.30	0.53	0.25	0.30	0.53	0.25	0.30	0.53
Потребляемый ток для двигателя ЕС (А)	0.12	0.28	0.89	0.12	0.28	0.89	0.12	0.28	0.89
Потребляемая мощность для двигателя AC (Bm)	50	70	115	50	70	115	50	70	115
Потребляемая мощность для двигателя EC (Bm)	48	72	108	48	72	108	48	72	108
IP/Класс изоляции		54/F			54/F			54/F	
Макс. уров. акустического давления (дБ(А))**	36	42	47	36	42	47	36	42	47
Макс. температура горячей воды (°C)		120			120			120	
Макс. рабочее давление (МПа)		1.6			1.6			1.6	
Присоединительные патрубки (Ф)		1/2			1/2			1/2	
Макс. рабочая температура (°C)		60			60			60	
Вес аппарата для двигателя АС (кг)		10.1			10.4			10.5	
Вес аппарата для двигателя ЕС (кг)		8.2			8.5			8.6	
Вес аппарата, наполненного водой, для двигателя АС (кг)		10.5			11.2			11.5	
Вес annapama, наполненного водой, для двигателя ЕС (кг)		8.6			9.3			9.6	
Теплообменник (материал/рядность)	Cu – A	Al, однор	ринбк	Cu - /	AI, двухр	ринбк	Cu - A	Al, двухр	рядный
Материал корпуса		EPP	– вспен	іенный п	олипроп	лен / А	BS плас	muk	
Цвет корпуса					Серыū				
Макс. длина струи воздуха (м) ***	7.5	11.0	14.5	5.0	8.5	14	3.0	6.5	13.0

Диапазон тепловых мощностей указан при максимальном напоре воздуха, температуре теплоносителя 60/40 – 120/70 и температуре входящего воздуха 0 °C.

ΓΡΕΕΡC BC-1110 | 1110ECM | 1220 | 1220ECM | 1230 | 1230ECM


^{**} Длина струи изотермического боздуха при граничной скорости 0,5 м/с.


АППАРАТЫ ВТОРОГО ТИПОРАЗМЕРА

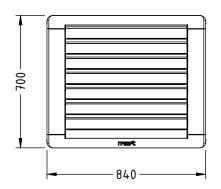

Характеристики	BC-212	25 BC-2	125ECM	BC-224	.5 BC−2	245ECM	BC-236	55 BC-21	365ECM
Диапазон тепловых мощностей (кВт)*	1	16.1 – 30.	7		27.3 – 51.	9	3	37.9 – 73.	2
Скорость АС (% установки ЕС)	1 (50)	2 (75)	3 (100)	1 (50)	2 (75)	3 (100)	1 (50)	2 (75)	3 (100)
Обороты двигателя АС (об/мин)	990	1255	1370	990	1255	1370	990	1255	1370
Расход воздуха (м³/ч)	2250	3400	4400	1700	2800	4100	1400	2400	3900
Питание (В/Гц)		230/50			230/50			230/50	
Потребляемый ток для двигателя АС (А)	0.78	0.88	1.20	0.78	0.88	1.20	0.78	0.88	1.20
Потребляемый ток для двигателя ЕС (А)	0.85	0.92	1.65	0.85	0.92	1.65	0.85	0.92	1.65
Потребляемая мощность для двигателя АС (Вт)	170	200	260	170	200	260	170	200	260
Потребляемая мощность для двигателя EC (Bm)	170	200	250	170	200	250	170	200	250
IP/Класс изоляции		54/F			54/F			54/F	
Макс. уров. акустического давления (дБ(А))**	44	49	54	44	49	54	44	49	54
Макс. температура горячей воды (°C)		120			120			120	
Макс. рабочее давление (МПа)		1.6			1.6			1.6	
Присоединительные патрубки (Ф)		3/4			3/4			3/4	
Макс. раδочая температура (°C)		60			60			60	
Вес аппарата для двигателя АС (кг)		15.3			17.1			19.0	
Вес аппарата для двигателя ЕС (кг)		12.6			14.4			16.3	
Вес аппарата, наполненного водой, для двигателя АС (кг)		16.0			18.4			20.9	
Вес аппарата, наполненного водой, для двигателя ЕС (кг)		13.3			15.7			18.2	
Теплооδменник (материал/рядность)	Cu – A	Al, однор	радный	Cu - /	AI, двухр	радный	Cu – A	Al, mpexp	оядный
Материал корпуса		EPP	– вспен	енный п	o⁄unpon	илен / А	BS плас	muk	
Цвет корпуса					Серый				
Макс. длина струи воздуха (м) ***	12.5	19.0	26.0	9.5	15.5	24.0	8.0	13.5	22.0

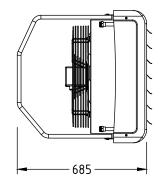
Диапазон тепловых мощностей указан при максимальном напоре воздуха, температуре теплоносителя 60/40 - 120/70 и температуре входящего воздуха 0 °C.

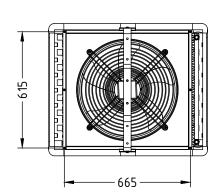
ΓΡΕΕΡC BC-2125 | 2125ECM | 2245 | 2245ECM | 2365 | 2365ECM

диапазон теплооых мощноствей укизин при миксимильном напоре обзодки, петпературе теплообскателя об 40 – 1607 го а теплературе окоох.

** Уровень звукового давления для помещения со средним коэффициентом звукопоглощения, объёмом 1500 м³, на расстоянии 5 м от аппарата.


*** Длина струи изотермического воздуха при граничной скорости 0,5 м/с.


АППАРАТЫ ТРЕТЬЕГО ТИПОРАЗМЕРА


Характеристики		BC-3275			BC-33100	
Диапазон тепловых мощностей (кВт)*		44.8 - 85.5			61.6 – 119.1	
Скорость (ступень)	1	2	3	1	2	3
Обороты двигателя (об/мин)	720	1080	1340	720	1080	1340
Расход воздуха (м³/ч)	3500	4800	5800	3000	4300	5200
Питание (В/Гц)		230/50			230/50	
Потребляемый ток (А)	1.10	1.45	1.85	1.10	1.45	1.85
Потребляемая мощность (Вт)	230	320	430	230	320	430
IP/Класс изоляции		54/F			54/F	
Макс. уров. акустического давления (дБ(А))**	60	62	65	60	62	65
Макс. температура горячей воды (°C)		120			120	
Макс. рабочее давление (МПа)		1.6			1.6	
Присоединительные патрубки (Ф)		3/4			3/4	
Макс. рабочая температура (°C)		60			60	
Bec annapama (k2)		31.0			33.0	
Вес аппарата, наполненного водой (кг)		34.4			36.7	
Теплообменник (материал/рядность)	Cu	– Al, одноря	Эный	Cu -	– Al, двухря	Эныū
Материал корпуса		EPP – Bcner	ненный полиг	пропилен / А	ABS пластик	
Цвет корпуса			Ceț	วมนิ		
Макс. длина струи воздуха (м) ***	13.0	20.5	26.0	9.0	15.0	23.0

^{*} Диапазон тепловых мощностей указан при максимальном напоре воздуха, температуре теплоносителя 60/40 – 120/70 и температуре входящего воздуха 0 °С.
** Уровень звукового давления для помещения со средним коэффициентом звукопоглощения, объёмом 1500 м³, на расстоянии 5 м от аппарата.

ΓΡΕΕΡC BC-3275 Ι 33100

зровень заукового воздуха при граничной скорости 0,5 м/с.

ТАБЛИЦЫ ТЕПЛОВОЙ МОЩНОСТИ

BC-1110 | BC-1110ECM

Параметры теплоносителя (°C)			120/70)				90/70					80/60					70/50					60/40		
Температура воздуха на входе (°C)	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20
				Рα	сход (Воздух	ka 210	0 m ³ /ч	i, 3-a	я скор	ость	AC, 1	00% E	C, 47	(A) d6))*					-				
Тепловая мощность (кВт)	13,5	12,4	11,4	10,4	9,4	13,2	12,1	11,1	10,2	9,2	11,1	10,1	9,1	8,2	7,2	9,1	8,1	7,1	6,1	5,1	6,9	5,9	4,9	3,9	2,7
Расход воды (л/ч)	239	221	203	185	167	581	536	492	448	405	489	445	402	359	316	397	353	310	268	225	302	259	215	170	117
Гидравлическое сопротивление (кПа)	0,9	0,8	0,7	0,6	0,5	4,6	4,0	3,4	2,9	2,4	3,4	2,9	2,4	2,0	1,6	2,4	2,0	1,6	1,2	0,9	1,6	1,2	0,8	0,6	0,3
Температура воздуха на выходе (°C)	17,7	21,7	25,6	29,5	33,3	17,3	21,3	25,2	29,1	33,0	14,7	18,6	22,5	26,3	30,2	12,0	15,8	19,7	23,5	27,3	9,1	13,0	16,7	20,4	23,8
				Pa	сход	возду	xa 160	00 м ³ /	ч, 2-а	я ско	рость	AC,	75% E	, 42	(A) d6))*									
Тепловая мощность (кВт)	11,7	10,8	9,9	9,0	8,2	11,4	10,5	9,6	8,8	7,9	9,6	8,8	7,9	7,1	6,2	7,9	7,0	6,1	5,3	4,4	6,0	5,1	4,2	3,3	1,9
Расход воды (л/ч)	207	192	176	160	145	503	464	426	388	351	423	385	348	310	274	343	306	268	231	194	261	223	185	144	81
Гидравлическое сопротивление (кПа)	0,7	0,6	0,5	0,4	0,4	3,5	3,0	2,6	2,2	1,8	2,7	2,2	1,9	1,5	1,2	1,9	1,5	1,2	0,9	0,7	1,2	0,9	0,6	0,4	0,2
Температура воздуха на выходе (°C)	20,2	24,0	27,7	31,4	35,1	19,7	23,5	27,3	31,0	34,7	16,7	20,4	24,2	27,9	31,5	13,6	17,3	21,0	24,6	28,2	10,4	14,0	17,6	21,0	23,5
				Po	тсход	возду	jxα 11(00 м ³ /	ч, 1-а	я ско	ость	AC, 5	0% E0	, 36 (дБ(A))	*									
Тепловая мощность (кВт)	9,5	8,8	8,1	7,3	6,6	9,3	8,5	7,8	7,1	6,5	7,8	7,1	6,4	5,7	5,1	6,4	5,7	5,0	4,3	3,6	4,8	4,1	3,4	2,5	1,7
Расход воды (л/ч)	169	156	143	130	117	409	377	346	315	285	344	313	282	252	222	279	248	218	187	156	211	179	147	109	73
Гидравлическое сопротивление (кПа)	0,5	0,4	0,4	0,3	0,3	2,4	2,1	1,8	1,5	1,3	1,8	1,5	1,3	1,0	0,8	1,3	1,1	0,8	0,6	0,5	0,8	0,6	0,4	0,3	0,1
Температура воздуха на выходе (°C)	23,9	27,5	31,0	34,4	37,8	23,3	26,9	30,4	33,9	37,4	19,7	23,3	26,8	30,2	33,6	16,0	19,5	23,0	26,3	29,6	12,2	15,6	18,8	21,7	24,5

BC-1220 | BC-1220ECM

Параметры теплоносителя (°C)			120/70					90/70					80/60					70/50					60/40		
Температура воздуха на входе (°C)	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20
	•			Pa	сход в	Воздух	a 200	0 m ³ /ч	ı, 3-a	я скор	ость	AC, 10	00% E	C, 47	(A)(A))*					•				
Тепловая мощность (кВт)	24,4	22,6	20,9	19,3	17,6	22,7	21,0	19,3	17,6	16,0	19,4	17,7	16,1	14,4	12,8	16,1	14,5	12,8	11,2	9,6	12,8	11,1	9,5	7,9	6,3
Расход воды (л/ч)	433	402	372	342	313	1000	925	851	777	705	852	778	706	634	563	705	632	561	490	421	557	486	415	345	275
Гидравлическое сопротивление (кПа)	3,5	3,1	2,7	2,3	1,9	16,6	14,4	12,4	10,5	8,8	12,8	10,8	9,1	7,5	6,0	9,3	7,7	6,2	4,9	3,7	6,3	5,0	3,7	2,7	1,8
Температура воздуха на выходе (°C)	33,7	36,9	40,0	43,1	46,1	31,4	34,5	37,6	40,7	43,7	26,8	30,0	33,0	36,0	39,0	22,3	25,4	28,4	31,3	34,3	17,7	20,6	23,7	26,5	29,4
	•			Pa	сход	возду:	κα 120	00 m ³ /	ч, 2-а	я ској	ость	AC, 7	5% E0	, 42	(A) 36	*					•				
Тепловая мощность (кВт)	18,2	16,9	15,6	14,3	13,1	16,8	15,5	14,3	13,0	11,8	14,4	13,1	11,9	10,7	9,5	12,0	10,7	9,5	8,3	7,1	9,5	8,3	7,1	5,9	4,6
Расход воды (л/ч)	323	299	277	254	232	741	685	629	575	521	632	577	522	469	416	523	469	416	353	311	413	360	307	255	202
Гидравлическое сопротивление (кПа)	2,1	1,8	1,6	1,3	1,1	9,6	8,3	7,2	6,1	5,1	7,4	6,3	5,3	4,3	3,5	5,5	4,5	3,6	2,8	2,2	3,7	2,9	2,2	1,6	1,1
Температура воздуха на выходе (°C)	41,8	44,5	47,2	49,7	52,3	38,7	41,4	44,0	46,6	49,2	33,2	35,8	38,4	40,9	43,4	27,6	30,1	32,7	35,2	37,6	21,9	24,4	26,8	29,2	31,5
	•			P	асход	возду	ха 70	0 m ³ /	ι, 1–α:	я скор	ость	AC, 5	0% EC	, 36 (ЭБ(A))						•				
Тепловая мощность (кВт)	12,9	12,0	11,0	10,1	9,2	11,9	11,0	10,1	9,2	8,3	10,2	9,3	8,4	7,5	6,7	8,5	7,6	6,7	5,9	5,0	6,7	5,8	5,0	4,1	3,2
Расход воды (л/ч)	229	213	196	180	164	524	484	444	405	367	447	408	369	331	294	370	332	294	256	219	292	254	216	179	140
Гидравлическое сопротивление (кПа)	1,1	1,0	0,8	0,7	0,6	5,1	4,4	3,8	3,2	2,7	4,0	3,4	2,8	2,3	1,9	2,9	2,4	1,9	1,5	1,2	2,0	1,6	1,2	0,8	0,6
Температура воздуха на выходе (°C)	51,0	53,1	55,2	57,2	59,1	46,9	49,1	51,2	53,2	55,2	40,2	42,3	44,4	46,4	48,3	33,4	35,5	37,5	39,4	41,2	26,5	28,5	30,3	32,1	33,6

BC-1230 | BC-1230ECM

Параметры теплоносителя (°С)			120/70)				90/70					80/60					70/50					60/40		
Температура воздуха на входе (°C)	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20
				Рα	cxod (Воздух	a 190	0 m³/ч	ı, 3-a	я скор	ость	AC, 10	00% E	C, 47	(A)(A))*									
Тепловая мощность (кВт)	31,5	29,2	27,0	24,8	22,7	29,0	26,8	24,6	22,5	20,4	24,9	22,7	20,6	18,5	16,4	20,7	18,6	16,5	14,4	12,4	16,5	14,4	12,3	10,3	8,2
Расход воды (л/ч)	560	519	480	441	403	1282	1183	1087	992	900	1094	998	904	811	721	907	813	721	630	541	719	627	537	447	358
Гидравлическое сопротивление (кПа)	3,6	3,1	2,7	2,3	2,0	16,8	14,5	12,4	10,5	8,8	13,0	11,0	9,2	7,6	6,1	9,5	7,8	6,3	5,0	3,8	6,5	5,1	3,9	2,8	1,9
Температура воздуха на выходе (°C)	45,8	48,3	50,7	53,1	55,3	42,3	44,7	47,1	49,5	51,8	36,2	38,7	41,0	43,3	45,6	30,2	32,5	34,9	37,1	39,3	24,0	26,3	28,6	30,7	32,8
	•			Po	тсход	возду	xa 90	0 m³/ч	ı, 2-a	я скор	ость	AC, 7	5% EC	, 42 (дБ(A))	*									
Тепловая мощность (кВт)	19,1	17,7	16,3	15,0	13,7	17,5	16,1	14,8	13,5	12,2	15,0	13,7	12,4	11,1	9,8	12,5	11,2	9,9	8,7	7,4	10,0	8,7	7,4	6,1	4,9
Расход воды (л/ч)	339	315	290	267	243	770	710	652	594	538	658	600	543	487	432	547	489	434	379	325	434	378	322	267	212
Гидравлическое сопротивление (кПа)	1,5	1,3	1,1	1,0	0,8	6,7	5,8	4,9	4,2	3,5	5,2	4,4	3,7	3,0	2,4	3,9	3,2	2,6	2,0	1,5	2,7	2,1	1,6	1,1	0,8
Температура воздуха на выходе (°C)	58,7	60,4	62,0	63,5	65.03	53,6	55,3	57,0	58,6	60,1	46,0	47,7	49,3	50,9	52,4	38,4	40,0	41,6	43,0	44,4	30,6	32,1	33,6	34,9	36,0
	•			Po	тсход	возду	χα 40	0 M³/ч	н, 1-а	я скор	ость	AC, 5	0% EC	, 36 (дБ(A))	*									
Тепловая мощность (кВт)	10,3	9,5	8,8	8,1	7,3	9,3	8,6	7,9	7,2	6,5	8,0	7,3	6,6	5,9	5,2	6,7	6,0	5,3	4,6	3,9	5,3	4,6	3,9	3,2	2,4
Расход воды (л/ч)	183	170	156	143	130	412	380	358	317	287	353	321	290	260	230	294	262	232	202	172	233	201	170	138	104
Гидравлическое сопротивление (кПа)	0,5	0,4	0,4	0,3	0,3	2,2	1,9	1,6	1,4	1,1	1,7	1,4	1,2	1,0	0,8	1,3	1,1	0,9	0,7	0,5	0,9	0,7	0,5	0,4	0,2
Температура воздуха на выходе (°C)	71,3	72,1	72,9	73,6	74,2	64,6	65,5	66,4	67,3	68,1	55,6	56,5	57,3	58,1	58,8	46,4	47,2	48,0	48,6	49,2	36,9	37,5	38,0	38,0	37,7

^{*} Уровень звукового давления для помещения со средним коэффициентом звукопоглощения, объёмом 1500 м³, на расстоянии 5 м от аппарата.

BC-2125 | BC-2125ECM

Параметры теплоносителя (°C)			120/70					90/70					80/60					70/50					60/40		
Температура воздуха на входе (°C)	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20
				Pa	сход в	оздух	a 440)0 м ³ /	ч, 3-а	я ско	рость	AC, 1	00% E	C, 54	(3E(A))*					-				
Тепловая мощность (кВт)	30,7	28,5	26,3	24,1	22,0	29,2	27,0	24,8	22,7	20,6	24,9	22,7	20,5	18,4	16,3	20,5	18,4	16,2	14,2	12,1	16,1	13,9	11,8	9,8	7,6
Расход воды (л/ч)	545	506	467	429	391	1287	1190	1095	1000	907	1092	997	903	810	718	897	803	711	619	528	700	608	516	425	333
Гидравлическое сопротивление (кПа)	3,0	2,6	2,3	2,0	1,7	12,5	10,9	9,3	7,9	6,6	9,6	8,1	6,8	5,6	4,5	6,9	5,7	5,4	4,2	3,2	5,5	4,2	3,2	2,2	1,5
Температура воздуха на выходе (°C)	19,3	23,2	27,1	31,0	34,8	18,3	22,3	26,2	30,0	33,9	15,6	19,5	23,4	27,2	31,0	12,9	16,8	20,6	24,4	28,1	10,1	13,9	17,7	21,5	25,2
	-			Рα	сход	возду	κα 340	00 m³/	ч, 2-с	1я ско	рость	AC,	75% E	C, 49	(9P(V))*									
Тепловая мощность (кВт)	27,0	25,0	23,1	21,2	19,3	25,6	23,6	21,7	19,9	18,0	21,8	19,9	18,0	16,6	14,3	18,0	16,1	14,2	12,4	10,6	14,1	12,2	10,4	8,5	6,7
Расход воды (л/ч)	479	445	410	377	343	1129	1044	960	877	795	958	874	791	710	630	787	704	623	543	463	614	533	453	372	291
Гидравлическое сопротивление (кПа)	2,4	2,1	1,8	1,6	1,3	9,9	8,6	7,3	6,2	5,2	7,5	6,4	5,3	4,4	3,5	6,5	5,3	4,3	3,3	2,5	4,3	3,4	2,5	1,8	1,1
Температура воздуха на выходе (°C)	21,9	25,7	29,5	33,2	36,8	20,8	24,6	28,3	32,0	35,7	17,7	21,5	25,2	28,9	32,5	14,6	18,3	22,0	25,6	29,2	11,5	15,1	18,8	22,3	25,8
	-			Pa	сход	возду	xa 22!	50 м ³ /	ч, 1-а	я ско	рость	AC, S	0% E	, 44	(ab(a))*					-				
Тепловая мощность (кВт)	21,7	20,1	18,6	17,0	15,5	20,5	18,9	17,4	15,9	14,4	17,5	15,9	14,4	12,9	11,5	14,4	12,9	11,4	9,9	8,5	11,3	9,8	8,3	6,8	5,3
Расход воды (л/ч)	385	358	330	303	276	904	836	768	702	636	768	700	634	569	504	631	565	499	435	371	492	427	362	297	230
Гидравлическое сопротивление (кПа)	1,6	1,4	1,2	1,1	0,9	6,6	5,7	4,9	4,2	3,5	5,1	4,3	3,6	2,9	2,4	4,4	3,6	2,9	2,2	1,7	2,9	2,3	1,7	1,2	0,8
Температура воздуха на выходе (°C)	26,7	30,2	33,7	37,1	40,4	25,2	28,7	32,2	35,6	38,9	21,5	25,0	28,4	31,8	35,1	17,7	21,2	24,5	27,9	31,2	13,9	17,3	20,6	23,8	27,0

BC-2245 | BC-2245ECM

Параметры теплоносителя (°C)			120/70					90/70					80/60					70/50					60/40		
Температура воздуха на входе (°C)	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20
	•			Рα	сход (Воздух	a 410	0 м³/ч	ı, 3-a	я скор	ость	AC, 10	00% E	C, 54	(45(A))*									
Тепловая мощность (кВт)	51,9	48,2	44,6	41,1	37,6	47,9	44,3	40,8	37,3	33,8	41,1	37,5	34,0	30,6	27,2	34,2	30,7	27,3	23,9	20,6	27,3	23,8	20,4	17,1	13,7
Расход воды (л/ч)	922	857	793	730	668	2114	1955	1799	1645	1493	1804	1649	1496	1345	1196	1496	1344	1193	1045	899	1188	1038	890	743	597
Гидравлическое сопротивление (кПа)	4,2	3,7	3,2	2,8	2,4	19,7	17,1	14,7	12,5	10,8	15,2	12,9	10,8	8,9	7,2	11,2	9,2	7,4	5,9	4,5	7,7	6,0	4,6	3,3	2,3
Температура воздуха на выходе (°C)	35,0	38,1	41,2	44,2	47,2	32,3	35,4	38,5	41,5	44,5	27,7	30,8	33,8	36,8	39,7	23,1	26,1	29,1	32,0	34,9	18,4	21,4	24,3	27,1	29,9
				Рα	сход	Воздух	ka 280)0 м ³ /	ч, 2-а	я ско	рость	AC, 7	15% E	C, 49	(ab(a))*									
Тепловая мощность (кВт)	41,7	38,7	35,8	32,9	30,1	38,3	35,4	32,6	29,8	27,0	32,9	30,0	27,2	24,5	21,8	27,4	24,6	21,8	19,1	16,4	21,8	19,1	16,3	13,6	10,9
Расход воды (л/ч)	741	688	637	586	536	1691	1563	1437	1313	1192	1444	1319	1196	1075	956	1198	1075	955	836	719	951	831	712	594	476
Гидравлическое сопротивление (кПа)	2,8	2,5	2,2	1,9	1,6	13,1	11,4	9,8	8,3	7,0	10,2	8,6	7,2	6,0	4,8	7,5	6,2	5,0	3,9	3,0	5,2	4,0	3,1	2,2	1,5
Температура воздуха на выходе (°C)	41,2	43,9	46,6	49,3	51,9	37,9	40,6	43,3	46,0	48,6	32,5	35,2	37,9	40,5	43,0	27,1	29,7	32,3	34,9	37,4	21,6	24,2	26,7	29,2	31,6
	•			Po	сход	возду	xa 170)0 м ³ /	ч, 1-а	я скор	ость	AC, 5	0% EC	, 44	дБ(A)	*									
Тепловая мощность (кВт)	30,5	28,3	26,2	24,1	22,0	27,9	25,8	23,7	21,6	19,6	24,0	21,9	19,8	17,8	15,8	20,0	17,9	15,9	13,9	12,0	15,9	13,9	11,9	9,9	7,9
Расход воды (л/ч)	543	504	466	428	391	1233	1138	1046	955	866	1053	961	871	782	695	874	784	696	609	523	694	606	518	431	343
Гидравлическое сопротивление (кПа)	1,6	1,4	1,2	1,1	0,9	7,4	6,4	5,5	4,7	3,9	5,8	4,9	4,1	3,4	2,7	4,3	3,5	2,8	2,2	1,7	2,9	2,3	1,8	1,3	0,9
Температура воздуха на выходе (°C)	49,7	51,9	54,1	56,3	58,3	45,4	47,7	49,9	52,1	54,2	39,0	41,2	43,4	45,5	47,6	32,5	34,7	36,8	38,9	40,8	25,9	28,0	30,1	32,0	33,7

BC-2365 | BC-2365ECM

Тепловая мощность (кВт) 73,2 68,9 64,6 60,2 Расход воды (л/ч) 1301 1225 1148 1071 Гидравлическое сопротивление (кПа) 4,3 3,7 3,4 3,0 Температура воздуха на выходе (°C) 54,6 56,3 58,0 59,6 Тепловая мощность (кВт) 53,2 50,1 47,0 43,9 Расход воды (л/ч) 945 891 836 780 Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8 Расход воздуха на выходе (°C) 64,4 65,6 66,7 67,8	xod 8o36 55,9 65 993 29 2,6 19	65,9 2909 :	5 1 3900 61,7 2723	57,5				5 AC, 10			20 (дБ(А)	0	5	70/50 10	15	20	0	5	60/40 10	15	20
Рассод воды (л/ч) 1301 1225 1148 1071 Гидравлическое сопротивление (кПа) 4,3 3,7 3,4 3,0 Температура воздуха на выходе (°C) 54,6 56,3 58,0 59,6 Телловая мощность (кВта) 53,2 50,1 47,0 43,9 Расход воды (л/ч) 945 891 836 780 Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8 Рас	xod 8o36 55,9 65 993 29 2,6 19	65,9 2909 :	- 1 3900 61,7 2723	0 м ³ /ч 57,5	ı, 3-as	т скор	ость	AC, 10	00% E	., 54		-	5	10	15	20	0	5	10	15	20
Тепловая мощность (кВт) 73,2 68,9 64,6 60,2 Расход воды (л/ч) 1301 1225 1148 1071 Гидравлическое сопротивление (кПа) 4,3 3,7 3,4 3,0 Температура воздуха на выходе (°C) 54,6 56,3 58,0 59,6 Тепловая мощность (кВт) 53,2 50,1 47,0 43,9 Расход воды (л/ч) 945 891 836 780 Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8	55,9 65 993 29 2,6 19	65,9 2909 :	61,7 2723	57,5							(A) 36))*									
Расход воды (л/ч) 1301 1225 1148 1071 Гидравлическое сопротивление (кПа) 4,3 3,7 3,4 3,0 Температура воздуха на выходе (°C) 54,6 56,3 58,0 59,6 Тепловая мощность (кВт) 53,2 50,1 47,0 43,9 Расход воды (л/ч) 945 891 836 780 Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8 Расход воды (л/ч) Расход воздуха на выходе (°C) 64,4 65,6 66,7 67,8 Расход воды (л/ч) Расход воздуха на выходе (°C) 64,4 65,6 66,7 67,8	993 29 2,6 19	2909 19,8	2723		53,3	49,0	567	F0 /													
Гидравлическое сопротивление (кПа) 4,3 3,7 3,4 3,0 Температура воздуха на выходе (°C) 54,6 56,3 58,0 59,6 Тепловая мощность (кВт) 53,2 50,1 47,0 43,9 Расход воды (л/ч) 945 891 836 780 Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8 Рас	2,6 19	19,8		2537			١,٥٤	52,4	48,2	43,9	39,6	47,3	43,1	38,8	34,4	30,1	37,9	33,5	29,1	24,7	20,1
Температура воздуха на выходе (°C) 54,6 56,3 58,0 59,6 ———————————————————————————————————			47.5	2331	2350	2163	2490	2304	2117	1929	1741	2072	1884	1696	1506	1315	1650	1461	1269	1074	874
Рас Тепловая мощность (кВт) 53,2 50,1 47,0 43,9 Расход воды (л/ч) 945 891 836 780 Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8	61,2 49		17,5	15,3	13,3	11,4	15,2	13,1	11,2	9,8	7,8	11,1	9,3	7,7	6,2	4,8	7,5	6,0	4,7	3,4	2,4
Тепловая мощность (кВт) 53,2 50,1 47,0 43,9 Расход воды (л/ч) 945 891 836 780 Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8		49,2	51,0	52,7	54,5	56,2	42,3	44,1	45,8	47,5	49,2	35,3	37,1	38,8	40,5	42,2	28,2	30,0	31,7	33,3	34,8
Расход воды (л/ч) 945 891 836 780 Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8	ход воз	оздухо	a 240	0 m ³ /ч	ч, 2-а	я ско	рость	AC, 7	5% EC	, 49 (∂Б(A)	*									
Гидравлическое сопротивление (кПа) 2,4 2,1 1,9 1,7 Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8 Рас	40,8 47	47,3	44,3	41,3	38,3	35,3	40,7	37,7	34,7	31,6	28,6	34,1	31,0	28,0	24,9	21,8	27,3	24,2	21,1	17,8	14,5
Температура воздуха на выходе (°C) 64,4 65,6 66,7 67,8 Ра	725 20	2086	1954	1822	1689	1557	1789	1657	1524	1390	1256	1492	1358	1224	1089	952	1190	1055	918	777	631
Pai	1,5 10	10,7	9,4	8,3	7,2	6,2	8,2	7,1	6,1	5,2	4,3	6,1	5,1	4,2	3,4	2,7	4,1	3,3	2,6	1,9	1,3
	68,9 57	57,3	58,6	59,8	61,1	67,6	49,3	50,6	51,9	53,1	54,3	41,3	42,6	43,8	45,0	46,1	33,1	34,3	35,4	36,5	37,4
Tongofing Mouseome (vBm) 36.1 3/.1 32.0 30.0	ход воз	оздух	a 140	0 m ³ /ч	н, 1-a:	я скор	ость	AC, 50	0% EC	, 44 (дБ(A))	*				·					
TET/TOOLS FIOMHOCITIB (KDIII)	27,8 31	31,6	29,7	27,7	25,7	23,7	27,3	25,3	23,3	21,3	19,3	22,9	20,9	18,9	16,8	14,7	18,4	16,3	14,2	12,0	9,6
Расход воды (л/ч) 642 605 569 532	494 13	1396	1309	1221	1134	1046	1200	1112	1025	936	847	1003	915	825	735	643	802	711	618	521	416
Гидравлическое сопротивление (кПа) 1,2 1,1 1,0 0,8		5,1	4,5	4,0	3,5	3,0	4,0	3,4	3,0	2,5	2,1	2,9	2,5	2,1	1,7	1,3	2,0	1,6	1,3	0,9	0,6
Температура воздуха на выходе (°C) 75,0 75,6 76,2 76,7	0,7 5	(F 7	66,5	67,3	68,0	68,7	56,7	57.5	58,3	59,0	59,7	476	48,4	49.1	49.7	50,2	38,2	38,8	39,3	39,7	39,7

^{*} Уровень звукового давления для помещения со средним коэффициентом звукопоглощения, объёмом 1500 м³, на расстоянии 5 м от аппарата.

BC-3275

Параметры теплоносителя (°С)			120/70)				90/70					80/60					70/50					60/40		
Температура воздуха на входе (°C)	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20
					Pac	ход в	эздухс	5800	м ³ /ч	, 3-ая	скор	ость /	AC, 65	(ab(<i>A</i>	())*	•					-				
Тепловая мощность (кВт)	85,5	80,3	75,1	69,9	64,6	79,0	73,8	68,7	63,5	58,3	67,7	62,5	57,3	52,1	46,9	56,3	51,1	45,9	40,6	35,3	44,8	39,5	34,2	28,9	23,4
Расход воды (л/ч)	1519	1427	1335	1242	1149	3484	3257	3030	2802	2573	2973	2745	2517	2289	2059	2463	2235	2006	1776	1544	1952	1723	1492	1258	1019
Гидравлическое сопротивление (кПа)	4,5	4,0	3,5	3,1	2,7	21,1	18,7	16,3	14,2	12,1	16,2	14,0	12,0	10,1	8,3	11,9	9,9	8,2	6,6	5,1	8,0	6,4	4,9	3,6	2,5
Температура воздуха на выходе (°C)	42,9	45,2	47,5	49,8	52,1	39,6	42,0	44,3	46,6	48,9	33,9	36,3	38,6	41,0	43,3	28,2	30,6	32,9	35,2	37,5	22,5	24,8	27,1	29,3	31,6
					Pac	ход во	эздухс	4800	м ³ /ч	, 2-as	скор	ость /	AC, 62	(05(4	A))*	•									
Тепловая мощность (кВт)	76,0	71,4	66,8	62,1	57,5	70,0	65,5	60,9	56,3	51,7	60,0	55,4	50,9	46,2	41,6	50,0	45,4	40,7	36,1	31,4	39,8	35,1	30,4	25,6	20,7
Расход воды (л/ч)	1351	1269	1187	1105	1022	3091	2889	2688	2486	2284	2637	2436	2234	2032	1828	2186	1984	1781	1577	1372	1733	1530	1325	1116	904
Гидравлическое сопротивление (кПа)	3,6	3,2	2,8	2,5	2,2	17,0	15,0	13,1	11,4	9,7	13,0	11,3	9,6	8,1	6,7	9,5	8,0	6,6	5,3	4,1	6,5	5,2	4,0	2,9	2,0
Температура воздуха на выходе (°C)	46,0	48,2	50,3	52,4	54,5	42,4	44,6	46,8	48,9	51,0	36,4	38,6	40,7	42,8	45,0	30,3	32,5	34,6	36,7	38,8	24,1	26,3	28,4	30,4	32,4
					Pac	ход в	оздух	a 3500) м ³ /ч	, 1-ая	скор	ость А	AC, 60	(9E(A	())*	-									
Тепловая мощность (кВт)	61,9	58,2	54,4	50,7	46,9	56,8	53,1	49,4	45,7	42,0	48,7	45,0	41,3	37,6	33,8	40,6	36,9	33,1	29,3	25,5	32,3	28,5	24,7	20,8	16,8
Расход воды (л/ч)	1100	1034	967	900	833	2508	2345	2182	2019	1855	2142	1979	1815	1651	1486	1776	1613	1448	1283	1116	1408	1243	1076	906	732
Гидравлическое сопротивление (кПа)	2,5	2,2	2,0	1,7	1,5	11,6	10,2	9,0	7,8	6,7	8,9	7,7	6,6	5,6	4,6	6,5	5,5	4,5	3,6	2,8	4,5	3,6	2,8	2,0	1,4
Температура воздуха на выходе (°C)	51,4	53,3	55,1	56,8	58,5	47,2	49,1	50,9	52,8	54,6	40,5	42,4	44,2	46,0	47,8	33,8	35,6	37,4	39,2	41,0	26,9	28,7	30,5	32,2	33,8

BC-33100

Параметры теплоносителя (°C)			120/70					90/70					80/60					70/50					60/40		
Температура воздуха на входе (°C)	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20	0	5	10	15	20
					Pac	ход в	эздухс	5200	м ³ /ч	3-ая	скор	ость /	AC, 65	(dE(A	())*										
Тепловая мощность (кВт)	119,1	113,0	105,9	99,2	92,6	103,6	97,2	90,7	84,3	77,9	89,7	83,2	76,8	70,3	63,7	75,7	69,2	62,7	56,1	49,4	61,6	55,0	48,3	41,6	34,6
Расход воды (л/ч)	2116	1999	1882	1764	1645	4571	4288	4004	3720	3436	3941	3657	3373	3087	2801	3313	3028	2742	2454	2162	2684	2396	2106	1811	1510
Гидравлическое сопротивление (кПа)	7,6	6,9	6,1	5,5	4,8	32,4	28,8	25,4	22,2	19,2	25,3	22,1	19,0	16,2	13,6	19,0	16,1	13,5	11,0	8,8	13,4	10,9	8,6	6,6	4,7
Температура воздуха на выходе (°C)	66,6	67,8	69,0	70,1	71,2	57,9	59,2	60,6	61,8	63,1	50,2	51,5	52,8	54,0	55,3	42,4	43,7	44,9	46,2	47,4	34,5	35,7	36,9	38,1	39,2
					Pac	ход во	эздухс	ı 4300	м³/ч	, 2-ая	скор	ость /	AC, 62	(05(4	())*										
Тепловая мощность (кВт)	104,3	98,6	92,9	87,1	81,3	90,3	84,7	79,2	73,6	68,0	78,3	72,7	67,0	61,4	55,7	66,1	60,5	54,8	49,1	43,3	53,9	48,1	42,3	36,4	30,4
Расход воды (л/ч)	1855	1753	1651	1548	1445	3985	3739	3493	3247	3000	3439	3192	2945	2697	2448	2894	2646	2397	2147	1894	2347	2097	1844	1587	1324
Гидравлическое сопротивление (кПа)	6,0	5,4	4,8	4,3	3,8	25,2	22,4	19,8	17,3	15,0	19,7	17,2	14,9	12,7	1,6	14,8	12,6	10,5	8,6	6,9	10,5	8,6	6,8	5,2	3,8
Температура воздуха на выходе (°C)	70,5	71,6	72,5	73,5	74,4	61,1	62,2	63,3	64,4	65,5	52,9	54,1	55,2	56,3	57,3	44,8	45,9	46,9	48,0	49,0	36,4	37,5	38,5	39,5	40,4
					Pac	ход в	оздухо	3000) м ³ /ч	, 1-ая	скорс	ость А	AC, 60	(0E(A	.))*										
Тепловая мощность (кВт)	80,3	76,0	71,6	67,2	62,8	68,8	64,6	60,4	56,2	52,0	59,7	55,5	51,3	47,0	42,7	50,6	46,3	42,0	37,7	33,3	41,3	36,9	32,5	28,0	23,4
Расход воды (л/ч)	1427	1350	1273	1195	1116	3037	2851	2665	2479	2293	2625	2439	2252	2065	1876	2214	2026	1838	1648	1456	1800	1609	1417	1221	1019
Гидравлическое сопротивление (кПа)	3,7	3,4	3,0	2,7	2,4	15,3	13,6	12,1	10,6	9,2	12,1	10,5	9,1	7,8	6,6	9,1	7,8	6,5	5,4	4,3	6,5	5,3	4,2	3,2	2,4
Температура воздуха на выходе (°C)	77,8	78,5	79,1	79,7	80,2	66,7	67,5	68,3	69,1	69,8	57,9	58,7	59,5	60,3	61,0	49,1	49,8	50,6	51,3	51,9	40,0	40,8	41,4	42,0	42,5

^{*} Уровень звукового давления для помещения со средним коэффициентом звукопоглощения, объёмом 1500 м³, на расстоянии 5 м от аппарата.

ТАБЛИЦЫ МОЩНОСТИ ОХЛАЖДЕНИЯ

Тепловентиляторы ГРЕЕРС ВС 2-го типоразмера можно использовать в режиме охлаждения. В качестве хладагента рекомендуем применить холодную воду с температурой от 3°C до 12°C или этиленгликоль (с содержанием до 50%).

В аппаратах ГРЕЕРС BC-2125 I 2125 ECM I 2245 I 2245 ECM I 2365 I 2365 ECM предусмотрен поддон для отвода конденсата, образующегося на теплообменнике.

При использовании тепловентилятора для охлаждения воздуха на теплообменнике может образоваться конденсат. Для снижения интенсивности его образования рекомендуется использовать аппараты на первой и второй скоростях.

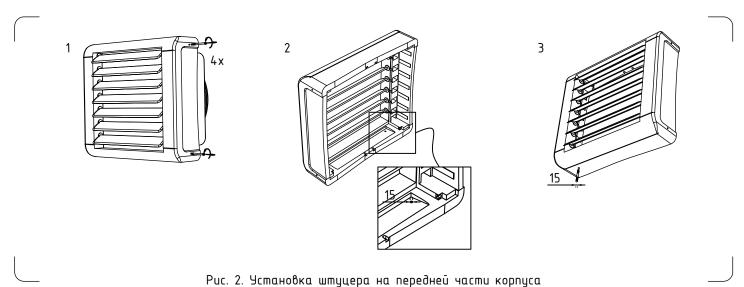
BC-2125 | BC-2125ECM

Параметры теплоносителя (°С)	3/8						5/10		7/12						
Температура воздуха на входе (°C)	32	30	28	26	24	32	30	28	26	24	32	30	28	26	24
Pac	код воза	Iyxa 340	00 м ³ /ч,	2-ая ск	орость	AC, 75%	EC, 49	(db(A))*							
Охлаждающая мощность (кВт)	9,9	9,1	8,2	7,3	6,1	8,8	8,0	7,2	6,2	5,0	7,8	6,9	6,1	5,2	4,0
Расход воды (л/ч)	1695	1553	1403	1245	1036	1517	1377	1228	1070	857	1330	1191	1043	886	680
Гидравлическое сопротивление (кПа)	27,8	23,8	19,8	16,0	11,6	22,6	19,0	15,4	12,1	8,2	17,6	14,5	11,4	8,5	5,3
Температура воздуха на выходе (°C)	29,3	27,8	26,2	24,6	22,7	29,5	28,0	26,5	24,9	22,9	29,7	28,3	26,7	25,1	23,3
Относительная влажность воздуха на входе в аппарат (%)	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5
Относительная влажность воздуха на выходе из аппарата (%)	55,4	60,3	65,2	70,0	70,4	55,7	60,6	65,5	70,2	71,0	56,5	61,3	66,1	70,8	71,2
Количество сжиженного конденсата (г/сек)	1,2	1,5	1,4	1,2	1,0	0,9	0,9	0,8	0,7	0,4	0,5	0,6	0,5	0,4	0,1
Pac	код возі	yxa 225	50 м³/ч,	1-ая ск	орость	AC, 50%	EC, 44	(db(a))*			•				
Охлаждающая мощность (кВт)	7,9	7,2	6,5	5,8	4,8	7,1	6,4	5,7	5,0	3,9	6,2	5,5	4,8	4,1	3,1
Расход воды (л/ч)	1355	1243	1122	994	822	1211	1100	979	851	673	1059	948	828	700	525
Гидравлическое сопротивление (кПа)	18,7	16,0	13,3	10,8	7,7	15,1	12,7	10,3	8,1	5,3	11,7	27,3	26,0	5,6	3,4
Температура воздуха на выходе (°C)	28,1	26,7	25,2	23,8	21,9	28,4	27,0	25,6	24,1	22,3	28,7	27,3	25,9	24,5	22,7
Относительная влажность воздуха на входе в аппарат (%)	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5
Относительная влажность воздуха на выходе из аппарата (%)	58,0	62,8	67,5	72,1	21,9	58,4	63,1	67,8	72,4	73,2	59,3	63,9	68,5	73,0	73,3
Количество сжиженного конденсата (г/сек)	0,9	0,9	0,9	0,8	0,5	0,7	0,7	0,7	0,6	0,3	0,4	0,5	0,4	0,4	0,1

BC-2245 | BC-2245ECM

Параметры теплоносителя (°С)	3/8						5/10			7/12					
Температура воздуха на входе (°C)	32	30	28	26	24	32	30	28	26	24	32	30	28	26	24
Расход воздуха 2800 м³/ч, 2-ая скорость АС, 75% EC, 49 (дБ(А))*															
Охлаждающая мощность (кВт)	16,0	14,8	13,5	12,1	10,2	14,4	13,2	11,9	10,5	8,6	12,6	11,5	10,2	8,8	6,9
Расход воды (л/ч)	2738	2532	2310	2076	1750	2461	2257	2036	1802	1472	2169	1968	1748	1514	1185
Гидравлическое сопротивление (кПа)	36,0	31,4	26,6	22,0	16,3	29,4	25,2	21,0	16,9	11,8	23,2	19,5	15,8	12,3	8,0
Температура воздуха на выходе (°C)	24,0	23,0	21,9	20,8	17,4	24,6	23,7	22,6	21,4	19,8	25,2	24,2	23,2	22,0	20,4
Относительная влажность воздуха на входе в аппарат (%)	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5
Относительная влажность воздуха на выходе из аппарата (%)	66,6	70,9	75,0	79,0	79,4	66,9	71,0	75,0	79,0	79,8	67,7	71,7	75,6	79,5	80,4
Количество сжиженного конденсата (г/сек)	2,1	2,0	2,0	1,8	1,3	1,7	1,7	1,6	1,4	0,9	1,2	1,2	1,1	1,0	0,5
Pac	код возі	Эуха 170	0 м ³ /ч,	1-ая ск	орость и	AC, 50%	EC, 44	(db(A))*							
Охлаждающая мощность (кBm)	8,5	7,9	7,2	6,4	5,4	7,7	7,0	6,3	5,6	4,5	9,3	8,4	7,5	6,4	5,0
Расход воды (л/ч)	1462	1350	1230	1102	926	1315	1203	1084	956	777	1588	1444	1280	1106	850
Гидравлическое сопротивление (кПа)	34,1	29,6	25,1	20,7	15,3	27,9	23,8	19,8	15,9	11,1	13,3	11,2	9,1	7,1	4,5
Температура воздуха на выходе (°C)	25,3	24,2	23,0	21,7	20,1	25,9	24,8	23,6	22,3	20,6	23,2	22,5	21,6	20,7	19,4
Относительная влажность воздуха на входе в аппарат (%)	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5
Относительная влажность воздуха на выходе из аппарата (%)	63,4	67,9	72,3	76,5	76,9	63,7	68,1	72,4	76,5	77,4	73,5	77,0	80,5	83,9	84,7
Количество сжиженного конденсата (г/сек)	1,1	1,1	1,0	1,0	0,7	0,9	0,9	0,8	0,8	0,5	0,9	0,9	0,8	0,7	0,3

^{*} Уровень звукового давления для помещения со средним коэффициентом звукопоглощения, объёмом 1500 м³, на расстоянии 5 м от аппарата.


BC-2365 | BC-2365ECM

Параметры теплоносителя (°C)	3/8						5/10			7/12					
Температура воздуха на входе (°С)	32	30	28	26	24	32	30	28	26	24	32	30	28	26	24
Расход воздуха 2400 м³/ч, 2-ая скорость АС, 75% EC, 49 (дБ(А))*															
Охлаждающая мощность (кВт)	18,1	16,8	15,3	13,7	11,4	16,2	14,9	13,4	11,8	9,4	14,2	12,8	11,4	9,7	7,3
Расход воды (л/ч)	3108	2875	2621	2349	1946	2780	2550	2295	2020	1608	2433	2203	1948	1670	1257
Гидравлическое сопротивление (кПа)	15,8	13,8	11,7	9,6	6,9	12,8	11,0	9,1	7,3	4,9	10,0	8,4	6,7	5,1	3,1
Температура воздуха на выходе (°C)	20,3	19,7	19,0	18,2	16,9	21,2	20,6	19,9	19,2	17,9	22,1	21,5	20,8	20,0	18,9
Относительная влажность воздуха на входе в аппарат (%)	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5
Относительная влажность воздуха на выходе из аппарата (%)	76,7	80,0	83,3	86,4	86,9	77,0	80,2	83,4	86,4	87,4	77,9	81,0	87,4	87,1	87,5
Количество сжиженного конденсата (г/сек)	2,3	2,3	2,2	2,0	1,4	1,9	1,8	1,7	1,6	0,9	1,3	1,3	1,2	1,1	0,5
Pac	код возі	Эуха 140	0 м³/ч,	1-ая ск	рость	AC, 50%	EC, 44	(db(A))*							
Охлаждающая мощность (кВт)	12,5	11,6	10,6	9,4	7,6	11,2	10,2	9,2	8,0	6,1	9,7	8,8	7,7	6,5	4,1
Расход воды (л/ч)	2144	1986	1808	1615	1310	1913	1753	1575	1376	1053	1668	1507	1324	1117	696
Гидравлическое сопротивление (кПа)	8,2	7,2	6,1	5,0	3,5	6,6	5,7	4,7	3,7	2,3	5,1	4,3	3,4	2,5	1,1
Температура воздуха на выходе (°C)	17,7	17,3	16,9	16,4	15,4	18,8	18,5	18,0	17,6	16,7	19,9	19,6	19,2	19,3	18,7
Относительная влажность воздуха на входе в аппарат (%)	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5	44	49,5	55	60,5	60,5
Относительная влажность воздуха на выходе из аппарата (%)	84,4	87,0	89,6	92,0	92,4	84,6	87,1	89,6	91,9	92,5	85,4	87,7	90,1	92,2	90,1
Количество сжиженного конденсата (г/сек)	1,6	1,6	1,5	1,4	0,9	1,3	1,3	1,2	1,1	0,6	0,9	0,9	0,8	0,7	0,2

^{*} Уровень звукового давления для помещения со средним коэффициентом звукопоглощения, объёмом 1500 м³, на расстоянии 5 м от аппарата.

ОТВОД КОНДЕНСАТА

Во время охлаждения воздуха на теплообменнике конденсируется вода (конденсат). Конденсат под силой тяжести стекает во встроенный в корпусе аппарата 2-го типоразмера поддон. Для того, чтобы контролируемым образом отводить избыток конденсата, следует сделать отверстие в нижней части корпуса тепловентилятора как указанно на Рис. 2 и установить штуцер.

В случае использования отпоительных аппаратов для охлаждения, на теплообменнике может происходить отделение капель воды за счет большой скорости прохождения воздуха через теплообменник. Чтобы это предотвратить, необходимо снизить скорость вращения вентилятора.

РЕКОМЕНДАЦИИ ПО МОНТАЖУ

ОБЩИЕ РЕКОМЕНДАЦИИ

Водяные тепловентиляторы ГРЕЕРС ВС предназначены для рециркуляционного воздушного отопления (охлаждения). При расстановке тепловентиляторов необходимо обеспечить равномерное распределение теплого воздуха по всему объему помещения. Устанавливая аппараты в углах, необходимо направлять струю воздуха в середину помещения. Неправильная расстановка оборудования может снизить эффективность работы системы отопления (охлаждения), чтобы избежать этого, мы рекомендуем соблюдать следующие правила размещения аппаратов.

- Устанавливайте тепловентиляторы в шахматном порядке для равномерного распределения воздушных потоков.
- Соблюдайте рекомендуемые расстояния между соседними аппаратами:
 - для аппаратов 1-го типоразмера от 5 до 8 метров;
 - для аппаратов 2-го типоразмера от 6 до 12 метров;
 - для annapamoв 3-го типоразмера от 8 до 15 метров.
- Соблюдайте рекомендуемые высоты монтажа устройств для обеспечения равномерного распределения воздуха по высоте помещения. Рекомендуемые высоты монтажа приведены на Рис. 3 и 4.

Дополнительные рекомендации по монтажу тепловентиляторов можете найти в Альбомах типовых решений размещенных на нашем сайте greers.ru

Для повышения эффективности работы системы отопления рекомендуется использовать дестратификаторы серии ГРЕЕРС Д. Эти устройства снижают эффект расслоения температуры воздуха по высоте помещения и уменьшают теплопотери через кровлю, что приводит к экономии эксплуатационных затрат.

Перед началом монтажных работ рекомендуется внести серийный номер оборудования в гарантийный талон. После завершения монтажа необходимо правильно заполнить гарантийный талон.

Тепловентилятор можно устанавливать на вертикальных или горизонтальных поверхностях с помощью монтажной консоли, которая поставляется в комплекте к каждому аппарату. Во время установки необходимо соблюдать рекомендуемые расстояния до ближайших конструкций и технологического оборудования (Рис. 3 и Рис. 4).

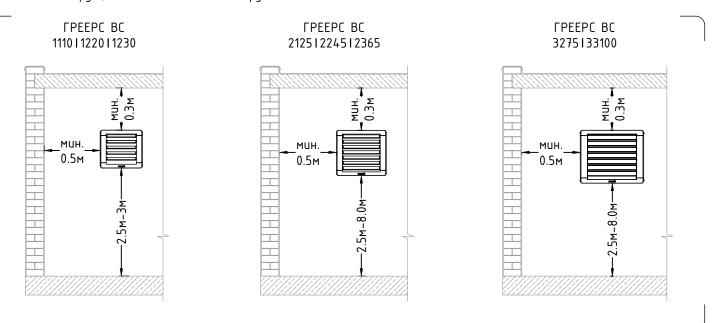
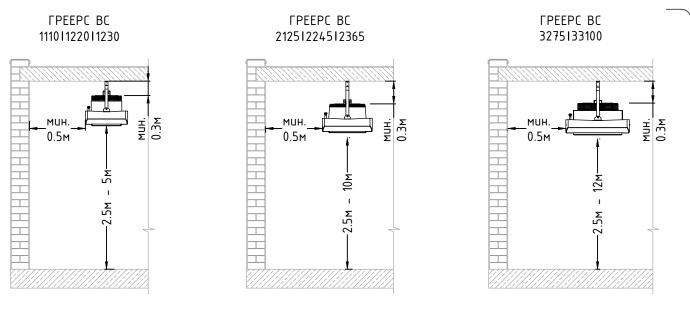
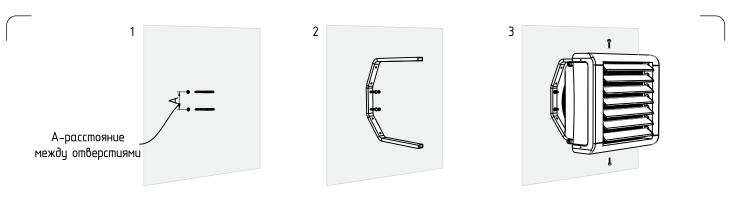



Рис. З. Рекомендуемые расстояния при вертикальном монтаже

Аппараты необходимо устанавливать таким образом, чтобы воздушный поток не перекрывался ограждающими конструкциями, технологическим оборудованием, стеллажами и т.д., а струя нагнетаемого воздуха была направлена в рабочую зону.


Несоблюдение требуемых расстояний до ближайших конструкций и оборудования может привести к снижению эффективности работы тепловентилятора, дополнительным шумам или поломке устройства.

Тепловентилятор может быть доукомплектован следующими элементами:

- Анемостат распределительная решетка для равномерного распределения воздуха, применяется в помещениях с низкими потолками.
- Конфузор предназначен для увеличения дальности струи воздуха, применяется в помещениях с высокими потолками.
- Фильтр предназначен для защиты теплообменника от загрязнений, таких как пыль и мусор, которые могут проникнуть в процессе эксплуатации оборудования.

УСТАНОВКА МОНТАЖНОЙ КОНСОЛИ

Монтажная консоль входит в стандартную комплектацию аппаратов серии «ВС». Она поставляется вместе с винтами М8, необходимыми для крепления к ней тепловентилятора (Рис. 5). Распорные дюбели не входят в состав набора. Для определенного типа поверхностей следует подобрать соответствующий тип дюбелей.

для 1-го типоразмера – 100 мм. для 2-го и 3-го типоразмера – 120 мм.

Рис. 5. Монтаж консоли

При выборе места монтажа тепловентилятора, необходимо учесть нагрузку и вибрацию, которую может оказывать аппарат.

ВАРИАНТЫ МОНТАЖА КОНСОЛИ

Консоль позволяет выполнить монтаж тепловентилятора на различных поверхностях под разными углами (Рис. 6):

- На стене в вертикальном положении, под углом 45° или 90°;
- Под перекрытием в горизонтальном положении или под углом 45° или 90°;
- Монтажная консоль дает возможность поворота отполительного аппарата вокруг оси крепления на 170°.

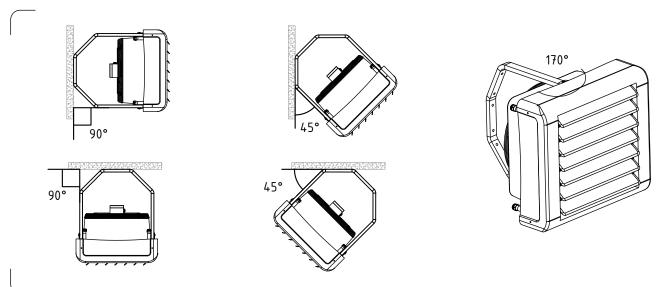


Рис. 6. Варианты установки монтажной консоли

КРЕПЛЕНИЕ МОНТАЖНЫХ ШПИЛЕК

Монтаж водяных тепловентиляторов в горизонтальном положении можно осуществить с использованием крепежных шпилек. Для фиксации шпилек рекомендуется применять скобы (поставляются отдельно). Скобы устанавливаются в отверстия, предусмотренные в углах корпуса аппарата, как показано на Рис. 7.

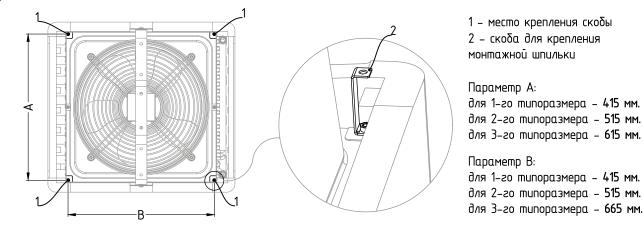
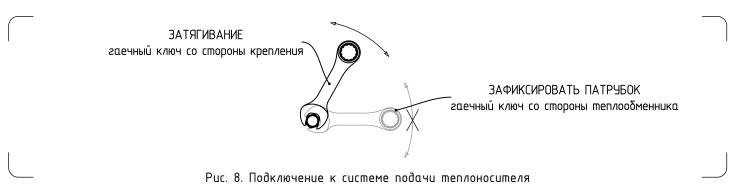


Рис. 7. Крепление монтажной шпильки с помощью скоб

Просим обратить внимание, скобы для подвеса тепловентилятора в горизонтальном положении с помощью монтажных шпилек приобретаются отдельно и не входят в стандартную комплектацию водяного тепловентилятора ГРЕЕРС.

Крепление подвесов в других частях аппарата запрещено.

В случае установки под перекрытием, переносящим вибрации, например, из гофрированного листа, обязательно применение виброизоляторов.



ПОДКЛЮЧЕНИЕ К ТЕПЛО И ЭЛЕКТРОСЕТИ

УКАЗАНИЯ ПО ПОДКЛЮЧЕНИЮ К ТЕПЛОСЕТИ

Монтаж, подключение, обслуживание и ремонт тепловентиляторов должны производиться специалистами, ознакомленными с настоящим документом (индивидуальным паспортом) и хорошо знающими устройство, принцип работы и правила эксплуатации тепловентиляторов, прошедшими инструктаж по охране труда и технике безопасности. Ниже приведены рекомендации по монтажу и подключению тепловентиляторов к системе теплоснавжения.

- Рекомендуется применение воздухоотводчиков в самой высокой точке системы, а также сетчатых фильтров с грязевиком на входе теплоносителя в теплообменник.
- При монтаже агрегата к трубопроводу с теплоносителем на каждом патрубке должно быть смонтировано по запорному вентилю для возможности перекрытия теплоносителя.
- Подключение тепловентилятора к прямой и обратной магистрали теплоносителя необходимо производить согласно обозначению на коллекторах теплообменника.
- Рекомендуется использовать сливной вентиль на выходе из теплообменника для проведения работ по обслуживанию тепловентилятора и для осуществления аварийного слива теплоносителя.
- Аппарат следует устанавливать так, чтобы в случае аварии его можно было демонтировать. Для этого отсекающие клапаны лучше всего разместить рядом с аппаратом.
- Система подачи теплоносителя должна быть защищена от роста давления выше допустимого значения (1,6 МПа).
- Для обеспечения требуемого расхода теплоносителя необходимо использовать балансировочный вентиль на прямой магистрали. Подбор балансировочного вентиля осуществляется проектировщиком согласно гидравлическому расчету.
- При сборке установки патрубки теплообменника должны быть полностью неподвижными.
- При подключении к системе подачи теплоносителя необходимо обеспечить защиту присоединительного патрубка теплообменника от воздействия крутящего момента (Рис. 8). Масса прокладываемых трубопроводов не должна создавать нагрузки на патрубки теплообменника.
- Перед запуском аппарата следует проверить правильность подключения системы подачи теплоносителя и проверить герметичность соединения.

Подключение тепловентилятора к сети теплоснабжения можно выполнить с помощью дополнительного оборудования такого, как Сантехнический комплект 1С и 2С (для тепловентиляторов с патрубками 1/2 и 3/4 дюйма соответственно). Данный изел комплектиется запорными и спискным кранами, автоматическим воздухоотводчиком.

Непринятие мер по выпуску воздуха из теплообменника может привести к образованию воздушных пробок с последующим замерзанием теплоносителя и разрывом трубок.

Рекомендуется использовать гибкие шланги для присоединения трубопроводов, что позволяет изменять положение аппарата на монтажной консоли.

В качестве теплоносителя может использоваться вода или теплоноситель на основе пропиленгликоля, либо этиленгликоля в концентрации до 50%

Для обеспечения необходимой циркуляции теплоносителя в гидравлическом контуре теплообменника, при полностью закрытом клапане, рекомендуем использовать смесительные узлы УСН-6 и УСН-8 (с насосом). Работа данных узлов основана на качественной схеме регулирования объема теплоносителя. Применение данных узлов позволит поддерживать заданную температуру воздуха на выходе из тепловентилятора, регулировать объем теплоносителя и защитит теплообменник аппарата от замерзания за счет установленного байпаса.

В качестве количественного регулирования системы, можно использовать смесительные узлы УС-6 и УС-8 (без насоса), данный узел обеспечит возможность регулирования и поддержания температуры, а также защитит теплообменник от замерзания.

При подключении водяных тепловентиляторов ГРЕЕРС ВС к тепловой сети для обеспечения правильного финкционирования системы отопления рекомендуется производить гидравлический расчет и балансировку системы.

Для получения рекомендаций по использованию различных схем регулирования температуры воздуха с применением тепловентиляторов и их групп, соответствующих нормативным требованиям и отраслевым стандартам, следует обратиться к квалифицированному специалисту в области проектирования вентиляционных и отопительных систем.

УКАЗАНИЯ ПО ПОДКЛЮЧЕНИЮ К ЭЛЕКТРОСЕТИ

Подключение тепловентилятора к электросети переменного тока с номинальным напряжением 220(230)В осуществляется через автоматический выключатель, в соответствии с "Правилами устройства электроустановок".

Специалисты, осуществляющие электромонтажные работы, дополнительно должны соблюдать требования безопасности, изложенные в «Правилах техники безопасности при эксплуатации электроустановок потребителей» и «Правилах технической эксплуатации электроустановок потребителей».

При работах, связанных с опасностью поражения электрическим током (в том числе статическим электричеством), следует применять защитные средства.

Электрическая сеть, питающая двигатель вентилятора, должна быть дополнительно защищена предохранителем для предотвращения последствий короткого замыкания и скачков напряжения в сети электроснабжения.

Подключение аппарата происходит СТРОГО к обесточенной сети. Запрещается эксплуатация тепловентиляторов без заземления. Запрещается использовать нулевой провод в качестве заземления. Запрещается подсоединять шину заземления к водопроводной трубе, молниеотводу, металлическим конструкциям здания.

В разделе АВТОМАТИКА И ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ указаны элементы управления тепловентиляторами. Выбор управляющей автоматики осуществляется исходя из условий эксплуатации аппаратов.

В случае использования автоматики не марки ГРЕЕРС производитель не сохраняет за собой гарантийные обязательства.

АВТОМАТИКА И ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Элементы автоматики и дополнительного оборудования не входят в стандартную комплектацию аппаратов ГРЕЕРС. Выбор элементов автоматики и дополнительного оборудования осуществляется исходя из рекомендаций 000 «ЮНИО-ВЕНТ», технических параметров оборудования и требований заказчика.

Не рекомендуется устанавливать элементы управляющей автоматики возле окон, дверных проемов, возле источников тепла и холода, на холодных и горячих поверхностях, под прямыми солнечными лучами.

Рекомендуется устанавливать элементы управляющей автоматики в рабочих зонах на высоте 1,5 метра таким образом, чтобы они наиболее объективно оценивали температуру в помещении и от работающего тепловентилятора.

При подключении тепловентилятора ГРЕЕРС к управляющей автоматике запрещается использовать провода одинакового цвета. При наличии проводов одинакового цвета в клеммной коробке гарантия на двигатель не распространяется.

ЧПРАВЛЯЮЩАЯ АВТОМАТИКА

TDS

комнатный термостат со встроенным 3-х ступенчатым регулятором скорости вращения вентилятора, для АС двигателей

Питание: 230В/50Гц

Диапазон настройки температуры: +10...+30°С Диапазон рабочей температуры: 0...+40°С

Степень защиты: IP30 Макс.нагрузка на клеммы: 5 A

Макс.сечение провода: 1,5 мм²

ПКУ-1

пульт контроля и управления, для АС двигателей

Питание: 230В/50Гц

Диапазон рабочей температуры: 0...+40°С

Степень защиты: IP54

Макс. нагрузка на клеммы: 6 А Макс. сечение провода: 1,5 мм²

Датчик температуры: выносной термостат

ERT (опционально)

AMT

командоконтроллер со встроенным термостатом, для AC двигателей

Питание: 230В/50Гц

Диапазон настройки температуры: +5...+35°C Диапазон рабочей температуры: +5...+99°C

Степень защиты: IP20 Макс.нагрузка на клеммы: 3 А Макс.сечение провода: 1,5 мм²

Датчик температуры: встроенный внутренний/

выносной NTC (опционально) Протокол: Modbus RTU **EMT**

командоконтроллер со встроенным термостатом,

для ЕС двигателей

Питание: 230В/50Гц

Диапазон настройки температуры: +5...+35°C Диапазон рабочей температуры: +5...+99°C

Степень защиты: IP20 Макс.нагрузка на клеммы: 3 A Макс.сечение провода: 1,5 мм²

Датчик температуры: встроенный внутренний/

выносной NTC (опционально) Протокол: Modbus RTU

ERT

выносной термостат

Питание: 230В/50Гц

Диапазон настройки температуры: 0...+40°С Диапазон рабочей температуры: 0...+80°С

Степень защиты: IP54 Макс.сечение провода: 1,5 мм² SW₂

распределительная коробка

Питание: 230В/50Гц

Диапазон рабочей температуры: +5...+40°С

Степень защиты: IP54 Макс. сечение провода: 2,5 мм² Макс. нагрузка на клеммы: 16 А

NTC

выносной датчик температуры

Диапазон рабочей температуры: -40...+125°C

Степень защиты: IP65

Сопротивление при 25°C: 10 000 Ω

БПУ-У

блок питания и управления универсальный

Питание: 230В/50Гц

Диапазон рабочей температуры: +5...+40°С Степень защиты: IP65 (с закрытой крышкой)

Макс. нагрузка на клеммы: 16 A Макс. сечение провода: 2,5 мм²

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

YCH-6

смесительный узел с насосом

Прямая магистраль: +5...+120°С Максимальное рабочее давление: 1 МПа Макс. рабочая температура: +60°С Диаметр подключения: 3/4" Расход воды: 3.2 м³/ч

4CH-8

смесительный изел с насосом

Прямая магистраль: +5...+120°С Максимальное рабочее давление: 1 МПа Макс. рабочая температура: +60°С Диаметр подключения: 1" Расход воды: 9.6 м³/ч

Сантехнический комплект для обвязки 1С, 2С

для подключения аппаратов с диаметрами патрубков 1/2"(1C), 3/4"(2C)

Класс герметичности затвора крана: А Номинальное давление: 10 бар Температура окружающей среды: -20...+60°С Температура рабочей среды: -20...+120°С Размер ячейки фильтра: 400 мкм

BC-A

анемостат для помещений с низкими потолками

Материал: металл Вес: 1,9 кг Применение: в помещении Дальность вертикальной струи: до 5 м Аппараты: 1 типоразмер **YC-6**

смесительный цзел без насоса

Прямая магистраль: +5...+120°С Максимальное рабочее давление: 1 МПа Макс. рабочая температура: +60°С Диаметр подключения: 3/4" KVS: 9.7 м³/ч

4C-8

смесительный узел без насоса

Прямая магистраль: +5...+120°С Максимальное рабочее давление: 1 МПа Макс. рабочая температура: +60°С Диаметр подключения: 1" KVS: 9.7 м³/ч

UVK 2d-1/2 UVK 2d-3/4

двухходовой клапан 1/2", 3/4" с сервоприводом

Питание: 230 В/50 Гц
Макс. температура теплоносителя: +95°С
Степень защиты: IP54
Макс. рабочее давление: 1 МПа
Кvs: 1/2" – 4,5 м³/ч; 3/4" – 9,7 м³/ч
Время открытия/закрытия: 45 сек/90°

Гибкая подводка 1/2", 3/4"

для подключения аппаратов с диаметрами патрубков 1/2", 3/4"

Тип: сильфонный Номинальное давление: 10 бар и 6 бар Давление на разрыв: 100 атм. Температура рабочей среды: +1...+200°С Длина: 1 м. Материал: нержавеющая сталь

ВС1-Ф ВС2-Ф фильтр позволяет тепловентилятору одновременно нагревать и фильтровать воздух без установки дополнительного оборудования

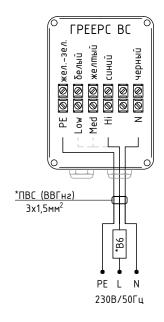
Материал: металл Вес: 4 кг Применение: в помещении Степень очистки: G3 Аппараты: 1 и 2 типоразмер BC2-K BC3-K

конфузор увеличивающий длину струи воздуха до 16 метров в вертикальном положении

Материал: металл Вес: 3,0 кг Применение: в помещении Дальность вертикальной струи: до 16 м Аппараты: 2 и 3 типоразмер

СХЕМЫ ПОДКЛЮЧЕНИЯ ДЛЯ АППАРАТОВ С АС ДВИГАТЕЛЕМ

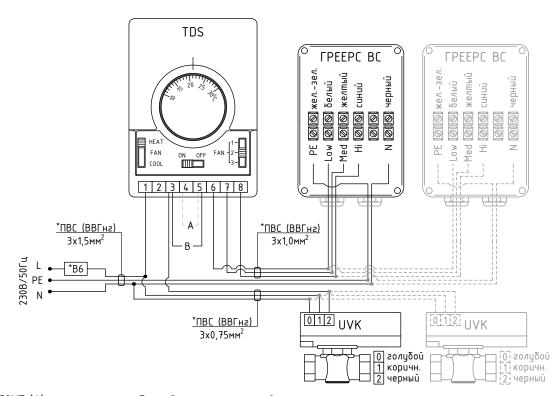
СХЕМА ПОДКЛЮЧЕНИЯ ПРИСОЕДИНИТЕЛЬНОЙ КОРОБКИ ВЕНТИЛЯТОРА К ЭЛЕКТРОСЕТИ


L - Hi - подключение (3 скорость)

L – Med – подключение (2 скорость)

L - Low - подключение (1 скорость)

N – нейтраль


РЕ - заземление

Нельзя подключать все три скорости на одну фазу одновременно

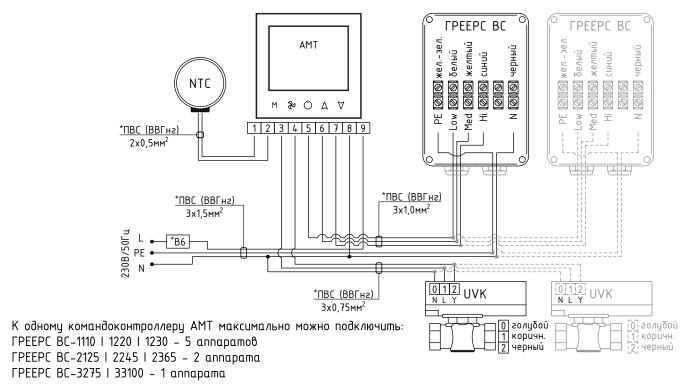
СХЕМА ПОДКЛЮЧЕНИЯ ТЕРМОСТАТА TDS, АППАРАТА И КЛАПАНА UVK

FAN CONT (A) – постоянная работа вентилятора независимо от температуры

FAN AUTO (B) – автоматический режим, работа вентиляторов в зависимости от температуры

К одному термостату TDS максимально можно подключить:

ΓΡΕΕΡC BC-1110 | 1220 | 1230 - 9 annapamo8


FPEEPC BC-2125 | 2245 | 2365 - 4 annapama

ГРЕЕРС BC-3275 | 33100 - 2 annapama

^{*}Подбор сечения провода и автоматического выключателя осуществляется проектировщиком исходя из количества подключаемых аппаратов

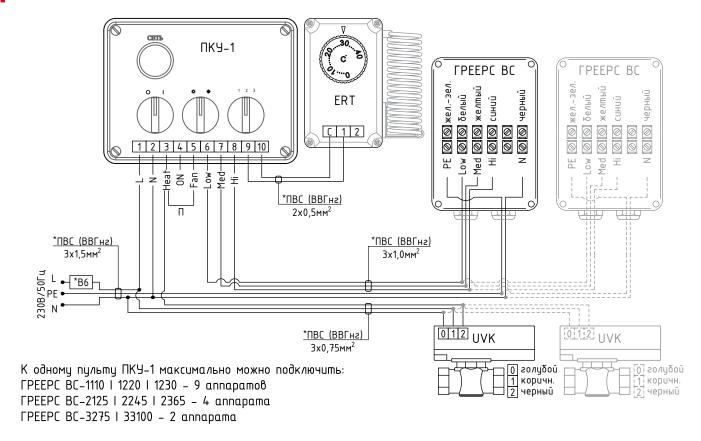
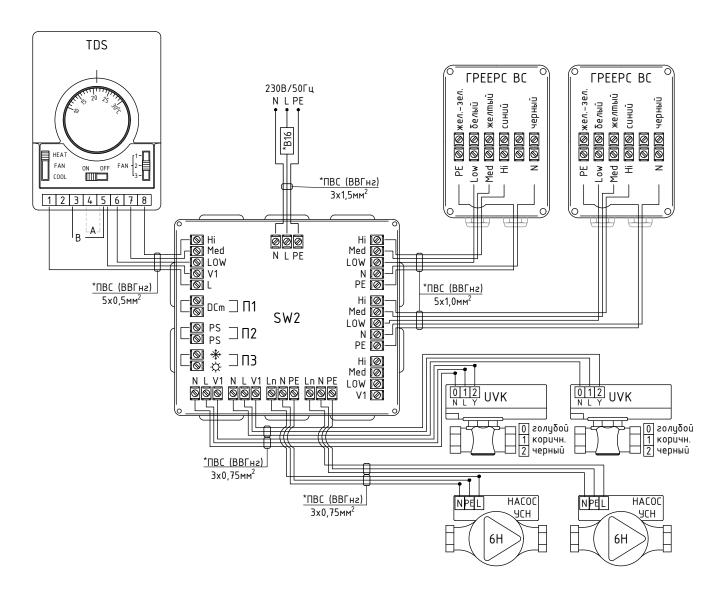


СХЕМА ПОДКЛЮЧЕНИЯ КОНТРОЛЛЕРА АМТ, АППАРАТА И КЛАПАНА UVK

Для управления тепловентиляторами из диспетиерского пункта рекомендуется использовать командоконтроллер АМТ в сочетании с выносным датиком температуры NTC. Максимальная длина провода, соединяющего датик с контроллером, не должна превышать 50 метров.


СХЕМА ПОДКЛЮЧЕНИЯ ПУЛЬТА ПКУ-1, АППАРАТА И КЛАПАНА UVK

*Подбор сечения провода и автоматического выключателя осуществляется проектировщиком исходя из количества подключаемых аппаратов

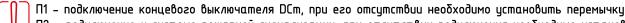
СХЕМА ПОДКЛЮЧЕНИЯ ТЕРМОСТАТА TDS С РАСПРЕДЕЛИТЕЛЕМ SW2, АППАРАТА, КЛАПАНА UVK И НАСОСА

- П1 подключение концевого выключателя DCm, при его отсутствии необходимо установить перемычку
- П2 подключение к системе пожарной сигнализации, при отсутствии подключения необходимо установить перемычку
- ПЗ подключение переключателя ЗИМА-ЛЕТО, при его отсутствии необходимо установить перемычку

FAN CONT (A) – постоянная работа вентилятора независимо от температуры

FAN AUTO (B) — автоматический режим, работа вентиляторов в зависимости от температуры

К одному распределителю SW2 максимально можно подключить: ГРЕЕРС BC-1110 | 1220 | 1230 - 20 аппаратов ГРЕЕРС BC-2125 | 2245 | 2365 - 9 аппарата


TPEEPC BC-2125 | 2245 | 2365 - 9 annapamo TPEEPC BC-3275 | 33100 - 6 annapama

*Подбор сечения провода и автоматического выключателя осуществляется проектировщиком исходя из количества подключаемых аппаратов

СХЕМА ПОДКЛЮЧЕНИЯ КОНТРОЛЛЕРА АМТ С РАСПРЕДЕЛИТЕЛЕМ SW2, АППАРАТА, КЛАПАНА UVK И НАСОСА

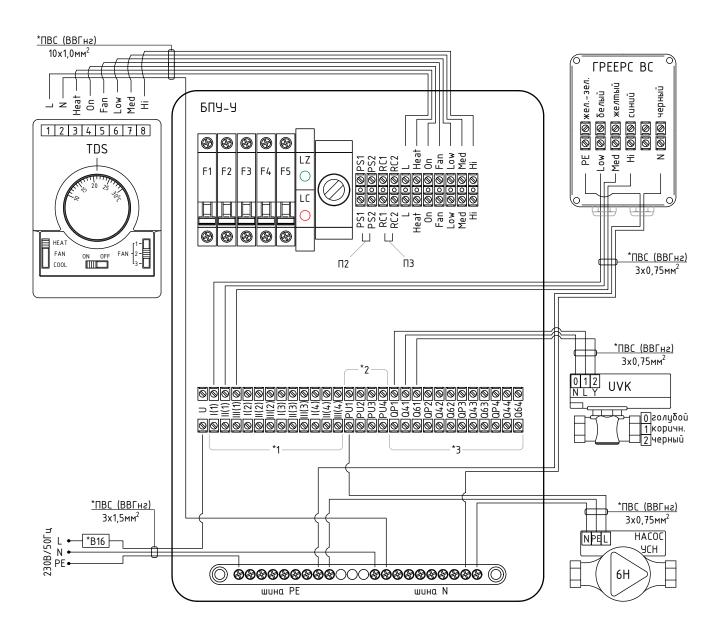
П2 – подключение к системе пожарной сигнализации, при отсутствии подключения необходимо установить перемычку

ПЗ – подключение переключателя ЗИМА-ЛЕТО, при его отсутствии необходимо установить перемычку

Для управления группой тепловентиляторов из диспетиерского пункта рекомендуется использовать командоконтроллер АМТ в сочетании с выносным датиком температуры NTC и распределительной коробкой SW2. Максимальная длина провода, соединяющего датик с контроллером, не должна превышать 50 метров.

К одному распределителю SW2 максимально можно подключить:

ГРЕЕРС BC-1110 | 1220 | 1230 - 20 annapamo8


FPEEPC BC-2125 | 2245 | 2365 - 9 annapama

ГРЕЕРС BC-3275 | 33100 - 6 annapama

^{*}Подбор сечения провода и автоматического выключателя осуществляется проектировщиком исходя из количества подключаемых аппаратов

СХЕМА ПОДКЛЮЧЕНИЯ ТЕРМОСТАТА TDS C БЛОКОМ БПУ-У, АППАРАТА, КЛАПАНА UVK И НАСОСА

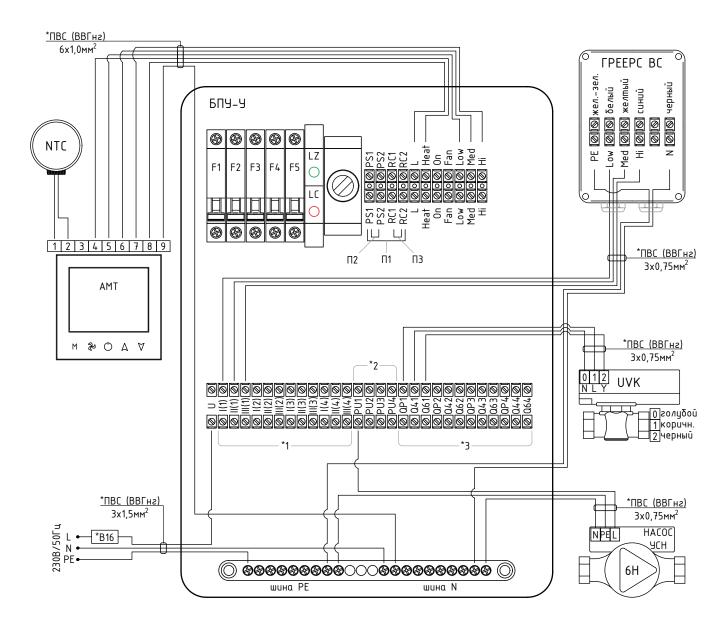
П2 – подключение к системе пожарной сигнализации, при отсутствии подключения необходимо установить перемычку П3 – подключение концевого выключателя DCm, при его отсутствии необходимо установить перемычку

Для управления группой тепловентиляторов большой мощности можно использовать комнатный термостат TDS с блоком питания и управления БПУ-У. Максимальная длина провода, соединяющего датчик с контроллером, не должна превышать 50 метров.

- *1 клеммы для подключения двигателей тепловентиляторов
- *2 клеммы для подключения питания насоса
- *3 клеммы для подключения привода двухходового клапана

К одному блоку БПУ-У максимально можно подключить:

ГРЕЕРС BC-1110 | 1220 | 1230 - 48 annapamo8


FPEEPC BC-2125 | 2245 | 2365 - 24 annapama

ГРЕЕРС BC-3275 | 33100 - 16 annapama

^{*}Подбор сечения провода и автоматического выключателя осуществляется проектировщиком исходя из количества подключаемых аппаратов

СХЕМА ПОДКЛЮЧЕНИЯ КОНТРОЛЛЕРА АМТ С БЛОКОМ БПУ-У, АППАРАТА, КЛАПАНА UVK И НАСОСА

- П1 обязательная установка перемычки при подключении АМТ командоконтроллера
- П2 подключение к системе пожарной сигнализации, при отсутствии подключения необходимо установить перемычку
- ПЗ подключение концевого выключателя DCm, при его отсутствии необходимо установить перемычку

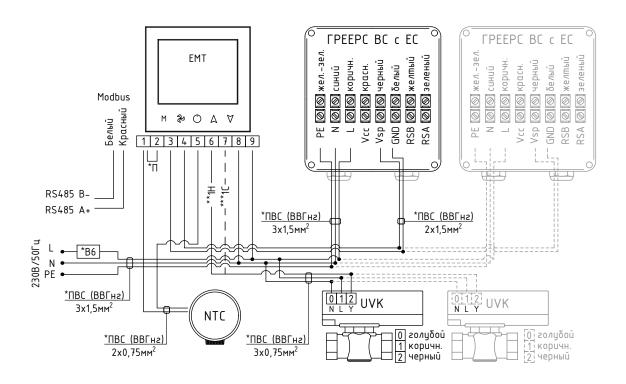
Для управления группой тепловентиляторов большой мощности из диспетчерского пункта рекомендуется использовать командоконтроллер АМТ в сочетании с выносным датчиком температуры NTC и блоком питания и управления БПУ-У. Максимальная длина провода, соединяющего датчик с контроллером, не должна превышать 50 метров.

- *1 клеммы для подключения двигателей тепловентиляторов
- *2 клеммы для подключения питания насоса
- *3 клеммы для подключения привода двухходового клапана

К одному блоку БПУ-У максимально можно подключить:

ГРЕЕРС BC-1110 | 1220 | 1230 - 48 annapamo8

FPEEPC BC-2125 | 2245 | 2365 - 24 annapama


ГРЕЕРС BC-3275 | 33100 - 16 annapama

^{*}Подбор сечения провода и автоматического выключателя осуществляется проектировщиком исходя из количества подключаемых аппаратов

СХЕМЫ ПОДКЛЮЧЕНИЯ ДЛЯ АППАРАТОВ С ЕС ДВИГАТЕЛЕМ

СХЕМА ПОДКЛЮЧЕНИЯ КОНТРОЛЛЕРА ЕМТ, АППАРАТА И КЛАПАНА UVK

Командоконтроллер ЕМТ предназначен для управления до 4-х тепловентиляторов с ЕС двигателями. Имеет встроенный термостат с диапазоном регулирования температуры и возможность подключения внешнего датчика температуры типа NTC. Максимальная длина провода, соединяющего датчик с контроллером, не должна превышать 50 метров.

К одному командоконтроллеру ЕМТ максимально можно подключить: ГРЕЕРС ВС-1110ЕСМ | 1220ЕСМ | 1230ЕСМ - 4 аппарата ГРЕЕРС ВС-2125ЕСМ | 2245ЕСМ | 2365ЕСМ - 4 аппарата

*Подбор сечения провода и автоматического выключателя осуществляется проектировщиком исходя из количества подключаемых аппаратов

ПУСКО-НАЛАДОЧНЫЕ РАБОТЫ И ЭКСПЛУАТАЦИЯ

Необходимо убедиться, что монтаж и подключение аппарата к тепловой сети и электросети выполнены верно, согласно предыдущим разделам данной документации. При установке, монтаже и запуске в эксплуатацию необходимо соблюдать правила технической эксплуатации электроустановок потребителей (ПТЭЭП) и межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ РМ-016-2001).

Перед первым включением тепловентилятора необходимо:

- Проверить свободное вращение рабочего колеса вентилятора.
- Осмотреть элементы корпуса и теплообменник аппарата на наличие повреждений и отсутствие посторонних предметов
- (инструмент, строительный мусор и т.д.).
- Заполнить системи водой и проверить герметичность присоединений к тепловой сети.
- Проверить, что параметры электрической сети соответствуют параметрам, указанным на заводской наклейке аппарата (шильдик).
- Проверить правильность соединения двигателя вентилятора и управляющей автоматики. Эти соединения должны быть выполнены согласно их технической документации.
- Подать электропитание и включить тепловентилятор с помощью выбранного пульта управления.
- Проверить функционирование аппарата и автоматики на всех режимах.
- Заполнить графы в гарантийном талоне.

При проведении пуско-наладочных испытаний тепловентиляторов необходимо убедиться в том, что расход теплоносителя через каждый аппарат должен быть не менее проектного, в противном случае необходима установка насоса.

При пуско-наладочных работах и после слива теплоносителя из системы требуется принятие мер по заполнению системы водой. Компания-изготовитель не несет ответственности за возможные неисправности в работе, связанные с неправильным подключением и эксплуатацией аппарата.

Обслуживание и ремонт компонентов тепловентилятора следует производить только при отключении его от электросети и выключенных автоматах защиты.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Annapam ГРЕЕРС ВС предназначен для работы внутри помещения при относительной влажности не более 80% (при температуре 25°С), при температурах не менее +5°С. При низких температурах (ниже +5°С) может произойти разморозка теплообменника.

Производитель не берет на себя ответственность за повреждение теплообменника вследствие замерзания воды. Если предусматривается работа аппарата при температурах ниже +5°С, то в качестве теплоносителя необходимо использовать раствор гликоля.

Нельзя ставить или вешать на аппарат и патрубки с водой какие-либо предметы. Тепловентилятор необходимо периодически проверять. В случае его неправильной работы следует как можно быстрее выключить аппарат.

Аппарат ГРЕЕРС ВС предназначен для использования в помещениях с максимальной запыленностью воздуха 0,3 г/м³. Вода в системе теплоснабжения (теплообменнике аппарата) должна отвечать нормам СП 40−108−2004 и СП 124.13330.2012 «Тепловые сети».

В связи с тем, что в тепловентиляторах применяются алюминиевые, медные и стальные элементы, запрещается использовать его во влажной и агрессивной среде, которая может привести к возникновению коррозии и/или окислению. Также тепловентиляторы нельзя устанавливать:

- Во взрыво-, пожароопасных помещениях. Исключением являются помещения с категорией В2 и выше, оборудованые автоматической системой пожарной сигнализации.
- Внутри холодильного оборудования.
- В тоннелях, шахтах и других автоматизированных помещениях.
- В автомобилях и строительной технике.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Не рекомендуем проводить самостоятельный ремонт, модификацию и перемещение аппарата, так как это может привести к поражению электрическим током, повреждению оборудования, возгоранию. При возникающих вопросах во время эксплуатации оборудования обратитесь в сервисную службы компании—изготовителя.

Для бесперебойной работы устройства рекомендуем выполнять минимум раз в год общую чистку аппарата и гидравлические соединения. В помещениях подверженным сильным загрязнением интервал обслуживания аппаратов необходимо сократить минимум до 2 раз в год.

При проведении работ по обслуживанию оборудования необходимо поставить отметку в таблице Гарантийного талона УЧЕТ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ. Данные отметки могут быть запрошены изготовителем при возможном гарантийном обслуживании.

Общий перечень работ по техническому обслуживанию оборудования:

- Визуальный осмотр оборудования на повреждения.
- Проверка рабочего колеса вентилятора.
- Проверка надежности крепежа аппарата.
- Проверка теплообменника и гидравлической обвязки на отсутствие протечек.
- Очистка сетчатых фильтров на обвязке теплообменника.
- Проверить работу всех режимов управляющей автоматики.
- Проверить и протянуть подключения проводов к двигателю аппарата и к элементам автоматики.
- Очистить поверхность тепловентилятора сжатым воздухом и ветошью.

Рекомендуем сливать воду из теплообменника и продувать его сжатым воздухом после каждого отопительного сезона. Очистка теплообменника водяных тепловениляторов должна быть произведена в соответствии с нижеуказанными требованиями:

- Во время проверки и очистки устройства необходимо отключить электропитание.
- Проводить очистку необходимо аккуратно, так, чтобы не повредить алюминиевые ламели теплообменника.
- Не рекомендуется использовать острые предметы, которые могут повредить тонкое алюминиевое оребрение.
- Рекомендуется производить очистку струей сжатого воздуха. Не допускается очистка теплообменника водой!
- Очистка должна производиться движениями вдоль линии ламелей, воздушное сопло должно быть направлено перпендикулярно теплообменнику.
- В случае если вода из теплообменника спускается на долгий период времени, теплообменник необходимо продуть сжатым воздухом, чтобы удалить воду из теплообменника.
- Рекомендуем периодически проверять степень загрязнения теплообменника. Загрязнение оборудования вызывает
 падение тепловой мощности устройства и может привести к повреждению аппарата.
- Каждые 5000–5200 ч. работы тепловентилятора (не реже 1 раза в 2 года) производить промывку внутренней поверхности теплообменника специальным средством для теплообменников.

Запрещается использовать поврежденный тепловентилятор.

Производитель не несет ответственности за ущерб, вызванный использованием поврежденного аппарата.

При обнаружении неисправности тепловентилятора, отключите его от питания и обратитесь к квалифицированному специалисту для диагностики и ремонта оборудования.

ПОИСК И ЧСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Если таблица приведенная ниже не помогла в поиске и устранении неисправности, необходимо обратиться в сервисную службу компании—изготовителя.

Неисправность	Вероятная причина	Метод устранения					
	Отсутствует напряжение в электросети	Проверить наличие напряжения в сет					
Тепловентилятор не включается	Не работает автоматический выключатель	Проверить срабатывание выключателя, при необходимости заменить					
	Обрыв в проводке тепловентилятора	Устранить обрыв					
Воздушный поток не нагревается	Недостаточный расход теплоносителя	Проверить циркуляцию теплоносителя в водяном контуре					

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

Тепловентиляторы ГРЕЕРС ВС в упаковке изготовителя могут транспортироваться всеми видами крытого транспорта при температуре от -50°С до +50°С и относительной влажности не более 80% (при температуре 25°С). Не допускаются механические повреждения корпуса. Не допускается попадание атмосферных осадков. Соблюдайте информационные знаки на упаковке аппарата.

Тепловентиляторы должны храниться в упаковке изготовителя в помещении при температуре от +1°C до +40°C в условиях, исключающих попадание атмосферных осадков, и относительной влажности до 80% при 25°C.

После транспортировки при отрицательных температурах необходимо оставить тепловентилятор в помещении, где предполагается его эксплуатация, без включения в сеть не менее 2-х часов.

ВЫВОД ИЗ ЭКСПЛУАТАЦИИ И УТИЛИЗАЦИЯ

Упаковочный материал, предназначенный для защиты тепловентилятора при перевозке и хранении, пригоден для вторичной переработки и не вредит окружающей среде.

Не выбрасывайте прибор вместе с бытовыми отходами. По истечении срока службы прибор должен быть утилизирован в соответствии с нормами, правилами и способами, действующими в месте утилизации.

По истечении срока службы прибора сдавайте его в пункт сбора для утилизации, если это предусмотрено местными нормами и правилами. Это поможет избежать негативное влияние на окружающую среду и здоровье человека, а также будет способствовать повторному использованию компонентов изделия. Информацию о том, где и как можно утилизировать прибор, можно получить от местных органов власти.

Демонтаж и разборка изделия должны осуществляться квалифицированным персоналом при полном отключении его от электропитания.

Драгоценные металлы и драгоценные камни в изделии отсутствуют или их содержащая масса не превышает: 0.001 г – для золота, платины и металлов платиновой группы; 0,01 г – для серебра; 0,01 карата – для драгоценных камней. На основании ГОСТ 2.608–78

СРОК СЛУЖБЫ

Срок службы тепловентилятора составляет 7 лет, исчисляется с даты ввода в эксплуатацию. При отсутствии информации по дате ввода в эксплуатацию оборудования, срок службы считается с даты выпуска аппарата. В случае непригодности тепловентилятора после окончания установленного срока службы производится его утилизация в соответствии со всеми санитарно-эпидемиологическими нормами и правилами, установленными в вашем регионе.

Оборудование не нуждается в специальной подготовке (консервации) к длительному хранению. Если оно не будет использоваться в течение долгого времени, то его следует отключить от электросети. Также рекомендуется регулярно продувать корпус сжатым воздухом.

ГАРАНТИЯ

Для осуществления сервисных и ремонтных работ обращайтесь в 000 «ЮНИО-ВЕНТ». Телефон сервисного отдела: +7 (495) 902-76-75; 8 (800) 707-02-35.

В рамках гарантийных обязательств, указанных в гарантийном талоне, осуществляется обслуживание прибора в течение гарантийного срока.

Срок гарантии составляет 3 года.

В случае возникновения гарантийного случая (или подозрении на гарантийный случай) необходимо прекратить работу оборудования, отключив питание и остановив подачу теплоносителя (хладоносителя). Запрещается демонтаж, разбор, отсоединение проводов автоматики и иные действия с оборудованием до обращения в сервисную службу компании-производителя.

СЕРТИФИКАЦИЯ ПРОДУКЦИИ

Товар сертифицирован на территории Евразийского экономического союза и соответствует всем национальным и международным стандартам. Сведения о сертификации могут быть изменены, при возникновении вопросов обращайтесь к продавцу.

Товар соответствует требованиям нормативных документов:

- TP TC 010/2011 «О безопасности машин и оборудования».
- ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

Регистрационный номер декларации о соответствии действующим регламентам: EA3C N RU Д-RU.PA08.B.67109/25 от 26.09.2025.

000 «ЮНИО-ВЕНТ»

117342, г. Москва, ул. Бутлерова, 17

Тел.: 8 (800) 707-02-35

+7 (495) 902-76-75

info@unio-vent.ru

greers.ru

10.2025 greers.ru